11-2 Rational Functions

New Vocabulary

- · rational function
- · excluded value
- asymptote

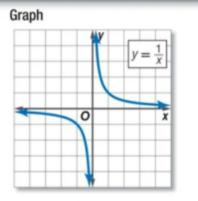
These are sample questions for today;

- 8. State the excluded value of the function $y = \frac{4}{x+4}$.
- 9. Identify the asymptotes of $y = \frac{6}{x} 5$.

Words	A rational function can be described by		Graph
110100			diapri My
		e form $y = \frac{\rho}{q}$, where	1
	p and q are polyr	nomials and $q \neq 0$.	$y = \frac{1}{x}$
	Parent function:	$f(x) = \frac{1}{x}$	
	Type of graph:	hyperbola	O x
	Domain:	$\{x \mid x \neq 0\}$	
	Range:	$\{y \mid y \neq 0\}$	

Remember; graphs are showing all the answers to a given value. KeyConcept Rational Functions

Words A rational function can be described by


an equation of the form $y = \frac{p}{q}$, where p and q are polynomials and $q \neq 0$.

Parent function: $f(x) = \frac{1}{x}$

Type of graph: hyperbola

Domain: $\{x \mid x \neq 0\}$

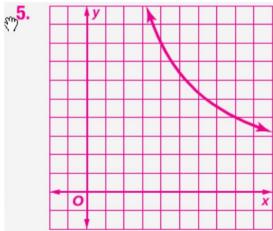
 $\{y \mid y \neq 0\}$ Range:

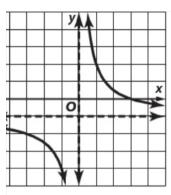
First, let's practice "excluded values."

Remember; you can't divide by zero.

Example 1 State the excluded value for each function.

1.
$$y = \frac{5}{x} x = 0$$

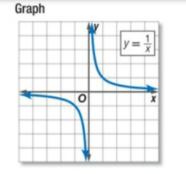

1.
$$y = \frac{5}{x} x = 0$$
 2. $y = \frac{1}{x+3} x = -3$ **3.** $y = \frac{x+2}{x-1} x = 1$ **4.** $y = \frac{x}{2x-8} x = 4$


4.
$$y = \frac{x}{2x - 8}$$
 x = 4

Now let's talk about these graph in everyday life...since we are talking about an *amount*, what values to we NOT use?

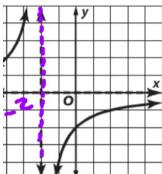
Example 2 5. PARTY PLANNING The cost of decorations for a party is \$32. This is split among a group of friends. The amount each person pays y is given by $y = \frac{32}{x}$, where x is the number of people. Graph the function. **See margin**.

Rational Functions


tional function can be described by equation of the form $y = \frac{\rho}{q}$, where nd q are polynomials and $q \neq 0$.

ent function: $f(x) = \frac{1}{x}$

e of graph: hyperbola


 $\{x | x \neq 0\}$ nain:

 $\{y | y \neq 0\}$ ge:

NOW, let's put both concepts together... excluded values are asymptotes!

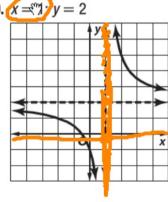
= -2; y = 0

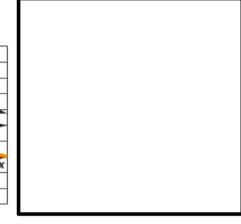
5. $y = \frac{2}{x}$ **7.** $y = \frac{3}{x} - 1$ **8.** $y = \frac{1}{x - 2}$ **9.** $y = \frac{-4}{x + 2}$ **10.** $y = \frac{3}{x - 1} + 2$ **11.** $y = \frac{2}{x + 1} - 5$ Identify the asymptotes of each function. Then graph the function.

6.
$$y = \frac{2}{x}$$

7.
$$y = \frac{3}{x} - 1$$

8.
$$y = \frac{1}{x-2}$$


9.
$$y = \frac{-4}{x+2}$$


10.
$$y = \frac{3}{x-1} + 2$$

11.
$$y = \frac{2}{x+1} - 5$$

10.
$$x = 7$$
 $y = 2$

Example 1

State the excluded value for each function. 14. x = -2

12. $y = \frac{-1}{x}$ x = 0 **13.** $y = \frac{8}{x-8}$ **14.** $y = \frac{x}{x+2}$ **15.** $y = \frac{4}{x+6}$

18. x = 2

16. $y = \frac{x+1}{x-3}$ x = 3 **17.** $y = \frac{2x+5}{x+5}$ **18.** $y = \frac{7}{5x-10}$ **19.** $y = \frac{x}{2x+14}$

Example 2

20. ANTELOPES A pronghorn antelope can run 40 miles without stopping. The average speed is given by $y = \frac{40}{x}$, where x is the time it takes to run the distance.

- a. Graph $y = \frac{40}{x}$. See Ch. 11 Answer Appendix.
- **b.** Describe the asymptotes. x = 0 and y = 0
- **21. CYCLING** A cyclist rides 10 miles each morning. Her average speed y is given by $y = \frac{10}{x}$, where x is the time it takes her to ride 10 miles. Graph the function.

Identify the asymptotes of each function. Then graph the function. Example 3

22.
$$y = \frac{5}{x}$$

23
$$y = \frac{-3}{x}$$

22.
$$y = \frac{5}{x}$$
 23. $y = \frac{-3}{x}$ **24.** $y = \frac{2}{x} + 3$

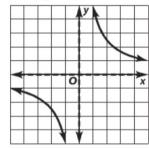
25.
$$y = \frac{1}{x} - 2$$

26.
$$y = \frac{1}{x+3}$$

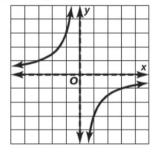
25.
$$y = \frac{1}{x} - 2$$
 26. $y = \frac{1}{x+3}$ **27.** $y = \frac{1}{x-2}$

28.
$$y = \frac{-2}{x+1}$$

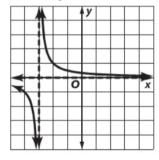
29.
$$y = \frac{4}{x-1}$$

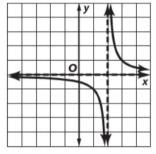

28.
$$y = \frac{-2}{x+1}$$
 29. $y = \frac{4}{x-1}$ **30.** $y = \frac{1}{x-2} + 1$

31.
$$y = \frac{3}{x-1} - 2$$

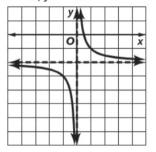

32.
$$y = \frac{2}{x+1} - 4$$

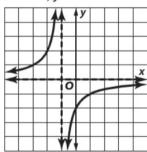
31.
$$y = \frac{3}{x-1} - 2$$
 32. $y = \frac{2}{x+1} - 4$ **33.** $y = \frac{-1}{x+4} + 3$

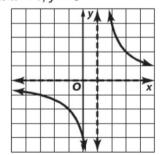

22.
$$x = 0$$
; $y = 0$


23.
$$x = 0$$
; $y = 0$

26.
$$x = -3$$
; $y = 0$


27.
$$x = 2$$
; $y = 0$


24.
$$x = 0$$
; $y = 3$


25.
$$x = 0$$
; $y = -2$

28.
$$x = -1$$
; $y = 0$

29.
$$x = 1$$
; $y = 0$

Identify the asymptotes of each function. Then graph the function. Example 3

22.
$$y = \frac{5}{x}$$

23
$$y = \frac{-3}{x}$$

22.
$$y = \frac{5}{x}$$
 23. $y = \frac{-3}{x}$ **24.** $y = \frac{2}{x} + 3$

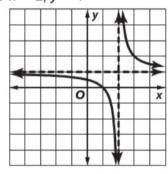
25.
$$y = \frac{1}{x} - 2$$

26.
$$y = \frac{1}{x+3}$$

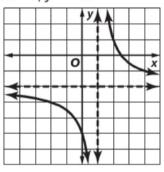
25.
$$y = \frac{1}{x} - 2$$
 26. $y = \frac{1}{x+3}$ **27.** $y = \frac{1}{x-2}$

28.
$$y = \frac{-2}{x+1}$$

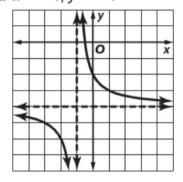
29.
$$y = \frac{4}{x-1}$$

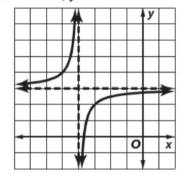

28.
$$y = \frac{-2}{x+1}$$
 29. $y = \frac{4}{x-1}$ **30.** $y = \frac{1}{x-2} + 1$

31.
$$y = \frac{3}{x-1} - 2$$


32.
$$y = \frac{2}{x+1} - 4$$

31.
$$y = \frac{3}{x-1} - 2$$
 32. $y = \frac{2}{x+1} - 4$ **33.** $y = \frac{-1}{x+4} + 3$


30.
$$x = 2$$
; $y = 1$


31.
$$x = 1$$
; $y = -2$

32.
$$x = -1$$
; $y = -4$

33.
$$x = -4$$
; $y = 3$

