2-1 Relations and Functions

KevConcept Functions

Example 1 Domain and Range

State the domain and range of each relation. Then determine whether each is a function. If it is a function, determine if it is one-to-one, onto, both, or

a.
$$\{(-6, -1), (-5, -9), (-3, -7), (-1, 7), (6, -9)\}$$

Domain:
$$\{-6, -5, -3, -1, 6\}$$
 Range: $\{-9, -7, -1, 7\}$

GuidedPractice

State the domain and range of each relation. Then determine whether each relation is a *function*. If it is a function, determine if it is *one-to-one*, *onto*, *both*, or *neither*.

1A. D = $\{-3, -2, -1, 0, 1, 3, 4\}$, R = $\{-3, -2, 1, 2, 4\}$; not a function 1B. D = $\{-3, -2, -1, 0, 1\}$, R = $\{0, 2, 4, 6, 8\}$; function; not one-to-

Check Your Understanding

Step-by-Step Solutions begin on page R14.

Example 1 CCSS STRUCTURE State the domain and range of each relation. Then determine whether each relation is a *function*. If it is a function, determine if it is *one-to-one*, *onto*, *both*, or *neither*.

 $D = \{-2, 5, 6\}, 1$ $R = \{-8, 1, 3\};$ function; both

one, not onto

3)	ж	у
	-2	-4
	1	-4
	4	-2
	8	6

2. D = {-2, 1, 4}, R = {-1, 2, 3, 5}; not a function 3. D = {-2, 1, 4, 8}, R = {-4, -2, 6}; function; onto

Additional Answer 4d. yes Wade's Average Points Per Game 28 26 24 20 0 20 22 24 26 28

Age

which the domain is a set of individual points, like the relation in Graph A, discrete relation. Notice that its graph consists of points that are not nen the domain of a relation has an infinite number of elements and the graphed with a line or smooth curve, the relation is a continuous relation.

rete and continuous graphs, you can use the vertical line test to determine lation is a function.

Example 2

4a. D = {24, 25, 26, 27}, R = {24.6, 27.2, 27.4, 30.2} 4b. {(24, 27.2), (25, 27.4), (26, 24.6), (27, 30.2)}

- 4. BASKETBALL The table shows the average points per game for Dwayne Wade of the Miami Heat for four seasons.
 - **a.** Assume that the ages are the domain. Identify the domain and range.
 - **b.** Write a relation of ordered pairs for the data.

Season	Dwayne Wade's Age	Average Points Per Game	7
2005–2006	24	27.2	
2006-2007	25	27.4	
2007–2008	26	24.6	
2008-2009	27	30.2	į
Courses Poolsothall	Deference	-	J

Source: Basketball-Reference

discrete

- **c.** State whether the relation is *discrete* or *continuous*.
- d. Graph the relation. Is this relation a function? See margin.

Graph each equation, and determine the domain and range. Determine whether the equation is a function, is one-to-one, onto, both, or neither. Then state whether it is discrete or continuous. 5–8. See Chapter 2 Answer Appendix.

Example 4 Evaluate a Function

Given $f(x) = 2x^2 - 8$, find each value.

a. f(6)

$$f(x) = 2x^2 - 8$$
 Original function
 $f(6) = 2(6)^2 - 8$ Substitute.
 $= 2(36) - 8$ Evaluate 6^2 .
 $= 72 - 8 \text{ or } 64$ Simplify.

b. f(2y)

$$f(x) = 2x^2 - 8$$
 Original function
 $f(2y) = 2(2y)^2 - 8$ Substitute.
 $= 2(4y^2) - 8$ $(2y)^2 = 2^2y^2$
 $= 8y^2 - 8$ Simplify.

Example 4 Evaluate each function.

9.
$$f(-3)$$
 if $f(x) = -4x - 8$ **4**

10.
$$g(5)$$
 if $g(x) = -2x^2 - 4x + 1$ **-69**

Example 1 State the domain and range of each relation. Then determine whether each relation is a *function*. If it is a function, determine if it is *one-to-one*, *onto*, *both*, or *neither*.

11.	Х	у
	-0.3	-6
	0.4	-3
	1.2	-1
	1.2	4

13.
$$\{(-3, -4), (-1, 0), (3, 0), (5, 3)\}$$
 See margin.

12.
$$D = \{-8, 2, 4\}, R = \{-6, -4, 14\};$$
 not a function

11. D = $\{-0.3, 0.4, 1.2\}$, R = $\{-6, -3, -1, 4\}$; not a function

Example 2 14. POLITICS The table below shows the population of several states and the number of U.S. representatives from those states.

- **a.** Make a graph of the data with population on the horizontal axis and representatives on the vertical axis. **See margin.**
- b. Identify the domain and range.
- **c.** Is the relation *discrete* or *continuous*? **discrete**
- **d.** Does the graph represent a function? Explain your reasoning.

14b. D = $\{8.07, 12.44, 16.03, 19.00, 20.90, 33.93\}$, R = $\{13, 19, 25, 29, 32, 53\}$

14d. Yes; each domain value is paired with only one range value so the relation is a function.

State	Population (millions)	Number of Representatives		
California	33.93	53		
Florida	16.03	25		
Illinois	12.44	19		
New York	19.00	29		
North Carolina	8.07	13		
Texas	20.90	32		

Source: U.S. Bureau of the Census

Example 3 STRUCTURE Graph each equation, and determine the domain and range. Determine whether the equation is a function, is one-to-one, onto, both, or neither. Then state whether it is discrete or continuous. 15-20. See Chapter 2 Answer Appendix.

15.
$$y = -3x + 2$$

16.
$$y = 0.5x - 3$$

17.
$$y = 2x^2$$

18.
$$y = -5x^2$$

19.
$$y = 4x^2 - 8$$

17.
$$y = 2x^2$$

20. $y = -3x^3 - 1$

Example 4 Evaluate each function.

21
$$f(-8)$$
 if $f(x) = 5x^3 + 1$ **-2559**

22.
$$f(2.5)$$
 if $f(x) = 16x^2$ **100**

23. DIVING The table below shows the pressure on a diver at various depths.

Depth (ft)	0	20	40	60	80	100
Pressure (atm)	1	1.6	2.2	2.8	3.4	4

a-d. See margin.

- **a.** Write a relation to represent the data.
- **b.** Graph the relation.
- **c.** Identify the domain and range. Is the relation *discrete* or *continuous*?
- **d.** Is the relation a function? Explain your reasoning.

Find each value if f(x) = 3x + 2, $g(x) = -2x^2$, and $h(x) = -4x^2 - 2x + 5$.

24.
$$f(-5)$$
 -13

27.
$$g(-6)$$
 -72

30.
$$f(\frac{2}{3})$$
 4

31.
$$g(\frac{3}{2})$$
 -4.5

27.
$$g(-6)$$
 -72 28. $h(3)$ **-37 29.** $h(8)$ **-267 30.** $f(\frac{2}{3})$ **4 31.** $g(\frac{3}{2})$ **-4.5 32.** $h(\frac{1}{5})$ $\frac{111}{25}$

23a. {(0, 1), (20, 1.6), (40, 2.2), (60, 2.8), (80, 3.4), (100, 4)

23b.

23c. $D = \{x \mid x \ge 0\};$ $R = \{y \mid y \ge 1\}$; continuous

23d. Yes; each domain value is paired with only one range value so the relation is a function.