3-1 Graphing Linear Equations

Linear Equations and Intercepts A linear equation is an equation that forms a line when it is graphed. Linear equations are often written in the form Ax + By = C. This is called the **standard form** of a linear equation. In this equation, C is called a **constant**, or a number. Ax and By are variable terms.

KeyConcept Standard Form of a Linear Equation

Words The standard form of a linear equation is Ax + By = C,

where $A \ge 0$, A and B are not both zero, and A, B, and C

are integers with a greatest common factor of 1.

Examples In 3x + 2y = 5, A = 3, B = 2, and C = 5.

In x = -7, A = 1, B = 0, and C = -7.

Example 1 Identify Linear Equations

Determine whether each equation is a linear equation. Write the equation in standard form.

a.
$$y = 4 - 3x$$

Rewrite the equation so that it appears in standard form.

$$y = 4 - 3x$$
 Original equation $y + 3x = 4 - 3x + 3x$ Add $3x$ to each side. Simplify.

The equation is now in standard form where A = 3, B = 1, and C = 4. This is a linear equation.

b.
$$6x - xy = 4$$

Since the term xy has two variables, the equation cannot be written in the form Ax + By = C. Therefore, this is not a linear equation.

Example 1 Determine whether each equation is a linear equation. Write yes or no.

If yes, write the equation in standard form.

If yes, write the equation in standard form:
1.
$$x = y - 5$$
 yes; $x - y = -5$
yes; $x - y = -5$
2. $-2x - 3 = y$
yes; $2x + y = -3$
yes; $2x + y = -3$
yes; $2x - y = 6$
 $y = 1$
 $y = 1$
 $y = 1$
 $y = 1$

Standardized Test Example 2 Find Intercepts from a Graph

Find the *x*- and *y*-intercepts of the line graphed at the right.

A x-intercept is 0; y-intercept is 30.

B *x*-intercept is 20; *y*-intercept is 30.

C *x*-intercept is 20; *y*-intercept is 0.

D *x*-intercept is 30; *y*-intercept is 20.

Examples 2–3 Find the *x*- and *y*-intercepts of the graph of each linear function. Describe what the intercepts mean.

5. Increasing Temperature

5. 25, —4; The x-intercept 25 means that after 25 minutes, the temperature is 0°F. The y-intercept —4 means that at time 0, the temperature is —4°F.

Real-World Example 3 Find Intercepts from a Table

SWIMMING POOL A swimming pool is being drained at a rate of 720 gallons per hour. The table shows the function relating the volume of water in a pool and the time in hours that the pool has been draining.

 Find the x- and y-intercepts of the graph of the function.

x-intercept = 14 14 is the value of x when y = 0. y-intercept = 10,080 10,080 is the value of y when x = 0.

Drain	ing a Pool
Time (h)	Volume (gal)
x	у
0	10,080
2	8640
6	5760
10	2880
12	1440
14	0

b. Describe what the intercepts mean in this situation.

The x-intercept 14 means that after 14 hours, the water has a volume of 0 gallons, or the pool is completely drained.

The y-intercept 10,080 means that the pool contained 10,080 gallons of water at time 0, or before it started to drain. This is shown in the graph.

Examples 2–3 Find the *x*- and *y*-intercepts of the graph of each linear function. Describe what the intercepts mean.

6.	Position o	of Scuba Diver
	Time (s)	Depth (m)
		7
	0	-24
	3	-18
	6	-12
	9	-
	12	0

6. 12, —24; The x-intercept 12 means that after 12 seconds, the scuba diver is at a depth of 0 meters, or at the surface. The y-intercept —24 means that at time 0, the scuba diver is at a depth of —24 meters, or 24 meters below sea level.

Example 4 Graph by Using Intercepts

Graph 2x + 4y = 16 by using the x- and y-intercepts.

To find the *x*-intercept, let y = 0.

To find the *y*-intercept, let
$$x = 0$$
.

$$2x + 4y = 16$$

Original equation

$$2x + 4(0) = 16$$

Replace y with 0.

$$2x = 16$$

Simplify.

$$x = 8$$

Divide each side by 2.

2x + 4y = 16

Original equation

$$2(0) + 4y = 16$$

Replace x with 0.

$$4y = 16$$

Simplify.

$$y = 4$$

Divide each side by 4.

(-4,0)

The *y*-intercept is 4. This means the graph intersects the y-axis at (0, 4).

Plot these two points and then draw a line through them.

Graph each equation by using the x- and y-intercepts.

7.
$$y = 4 + x$$

7. y = 4 + x (0, 4) 7-8. See Ch. 3 Answer Appendix. x - int (x = 0) y = 4 + x (y = 0) y = 4 + 0 y = 4 + 0 y = 4 + 0

8. 2x - 5y = 1 2x - 5(0) = 1 2x = 1

8.

Example 5 Graph by Making a Table

Graph
$$y = \frac{1}{3}x + 2$$
.

The domain is all real numbers. Select values from the domain and make a table. When the *x*-coefficient is a fraction, select a number from the domain that is a multiple of the denominator. Create ordered pairs and graph them.

x	$\frac{1}{3}x+2$	у	(x, y)
-3	$\frac{1}{3}(-3) + 2$	1	(-3, 1)
0	$\frac{1}{3}(0) + 2$	2	(0, 2)
3	$\frac{1}{3}(3) + 2$	3	(3, 3)
6	$\frac{1}{3}$ (6) + 2	4	(6, 4)

Example 5 Graph each equation by making a table. **9–11.** See Ch. 3 Answer Appendix.

9.
$$x + 2y = 4$$

10.
$$-3 + 2y = -5$$

11.
$$y = 3$$

- **12.** CSS REASONING The equation 5x + 10y = 60 represents the number of children x and adults y who can attend the rodeo for \$60.
 - **a.** Use the *x* and *y*-intercepts to graph the equation. **See margin**.
 - **b.** Describe what these values mean.

The x-intercept means that 12 children and 0 adults can attend for 60. The y-intercept means that 0 children and 6 adults can attend for 60.

_				
9.	x	$y=2-\frac{x}{2}$	y	(x, y)
	-4	$y = 2 - \frac{(-4)}{2}$	4	(-4, 4)
	-2	$y = 2 - \frac{(-2)}{2}$	3	(-2, 3)
	0	$y=2-\frac{0}{2}$	2	(0, 2)
	2	$y = 2 - \frac{2}{2}$	1	(2, 1)
	4	$y=2-\frac{4}{2}$	0	(4, 0)

10.	х	-3+2y=-5	у	(x, y)
	-2	-3 + 2y = -5	-1	(-2, -1)
	-1	-3+2y=-5	-1	(-1, -1)
	0	-3 + 2y = -5	-1	(0, -1)
	1	-3 + 2y = -5	-1	(1, -1)
	2	-3 + 2y = -5	-1	(2, -1)

			-	y		
-		_	0			-
_	١.		Ų,			_^
_						
_						

11.	х	y = 3	у	(x, y)
	-2	y = 3	3	(-2, 3)
	-1	y = 3	3	(-1, 3)
	0	y = 3	3	(0, 3)
	1	y = 3	3	(1, 3)
	2	y = 3	3	(2, 3)

Example 1 Determine whether each equation is a linear equation. Write yes or no. If yes, write the equation in standard form.

$$13 \ 5x + y^2 = 25 \ \mathbf{no}$$

13
$$5x + y^2 = 25$$
 no 14. $8 + y = 4x$ $\frac{\text{yes}}{4x - y} = 8$ 15. $9xy - 6x = 7$ no

15.
$$9xy - 6x = 7$$
 no

16.
$$4y^2 + 9 = -4$$
 no

16.
$$4y^2 + 9 = -4$$
 no 17. $12x = 7y - 10y$ **yes;** $4x + y = 0$

18.
$$y = 4x + x$$
 yes; $5x - y = 0$

Find the x- and y-intercepts of the graph of each linear function. **Example 2**

19.

3.4

20.	ж	у
	-3	-1
	-2	0
	-1	1
	0	2
	1	3

-2.2

Find the x- and y-intercepts of each linear function. Describe what the intercepts mean.

21. **Descent of Eagle**

6, 20; The x-intercept represents the number of seconds that it takes the eagle to land. The y-intercept represents the initial height of the eagle.

22. **Eva's Distance from Home** Time Distance (min) (mi) X y 0 4 2 3 4 2 6 1 8 0

8. 4: The x-intercept 8 means that it took Eva 8 minutes to get home. The y-intercept 4 means that Eva was initially 4 miles from home.

Example 4 Graph each equation by using the
$$x$$
- and y -intercepts. 23–28. See margin.

23.
$$y = 4 + 2x$$

24.
$$5 - y = -3x$$

25.
$$x = 5y + 5$$

26.
$$x + y = 4$$

27.
$$x - y = -3$$

28.
$$y = 8 - 6x$$

29.
$$x = -2$$

30.
$$y = -4$$

31.
$$y = -8x$$

32.
$$3x = y$$

33.
$$y - 8 = -x$$
 34. $x = 10 - y$

34.
$$x = 10 - y$$

TV RATINGS The number of people who watch a singing competition can be given by
$$p = 0.15v$$
, where p represents the number of people in millions who saw the show and v is the number of potential viewers in millions.

a. Make a table of values for the points (v, p).

35a-b. See Chapter 3 **Answer Appendix.**

- **b.** Graph the equation.
- **c.** Use the graph to estimate the number of people who saw the show if there are 14 million potential viewers. ≈2.1 million
- **d.** Explain why it would not make sense for v to be a negative number. There cannot be fewer than $\mathbf 0$ viewers.

29

x	у
-2	0
-2	1
-2	2

7	•	١
-1	,	

X	у
0	0
1	3
2	6

•		-
-	u	3
	ы.	na.

V	p = 0.15v	р	(<i>v</i> , <i>p</i>)
0	p = 0.15(0)	0	(0, 0)
2	p = 0.15(2)	0.3	(2, 0.3)
4	p = 0.15(4)	0.6	(4, 0.6)
6	p = 0.15(6)	0.9	(6, 0.9)
8	p = 0.15(8)	1.2	(8, 1.2)
10	p = 0.15(10)	1.5	(10, 1.5)

30.

x	у
0	-4
1	-4
2	-4

33.

•	x	у
	0	8
	1	7
	2	6

35b.

31.

х	y
-1	8
0	0
1	-8

34.

1	x	у
	0	10
	1	9
Γ	2	8

