Example 1

CSS MODELING Use the table that shows the city and highway gas mileage of five different types of vehicles.
 1b. Sample

1c. Sample answer: The sums are 48, 45, 53, 91, and 131. These values are irrelevant since they are the sums of 2 different types of data.

Vehicle	SUV	Mini-van	Sedan	Compact	APV
City	23	21	21	42	61
Highway	25	24	32	49	70

Source: Auto Hoppers

 [23
 21
 21
 42
 61

 25
 24
 32
 49
 70

- a. Organize the gas mileages in a matrix. 25
 b. Add the elements of each row and interpret the results.
- **c.** Add the elements of each column and interpret the results.

1b. Sample answer: City: The sum is 168. However, this value is irrelevant since it is the sum of 5 different types of data. Highway: The sum is 200. However, this value is irrelevant since it is the sum of 5 different types of data.

Example 2 Add and Subtract Matrices

Find each of the following for $A = \begin{bmatrix} 16 & 2 \\ -9 & 8 \end{bmatrix}$, $B = \begin{bmatrix} -4 & -1 \\ -3 & -7 \end{bmatrix}$, and $C = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$.

a.
$$A + B$$

$$A+B=\begin{bmatrix}16&2\\-9&8\end{bmatrix}+\begin{bmatrix}-4&-1\\-3&-7\end{bmatrix}$$
 Substitution
$$=\begin{bmatrix}16+(-4)&2+(-1)\\-9+(-3)&8+(-7)\end{bmatrix}$$
 Add corresponding elements.
$$=\begin{bmatrix}12&1\\-12&1\end{bmatrix}$$
 Simplify.

b. B-C

$$B - C = \begin{bmatrix} -4 & -1 \\ -3 & -7 \end{bmatrix} - \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

KeyConcept Adding and Subtracting Matrices

Words To add or subtract two matrices with the same dimensions, add or subtract their

Symbols
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

$$A - B = A-B$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix}$$

 $\begin{bmatrix} 3 & -5 \\ 1 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ -9 & 10 \end{bmatrix} = \begin{bmatrix} 3+2 & -5+0 \\ 1+(-9) & 7+10 \end{bmatrix}$ Example Substitution

Since the dimensions of B and C are different, you cannot subtract the matrices.

c.
$$B-A$$

$$B - A = \begin{bmatrix} -4 & -1 \\ -3 & -7 \end{bmatrix} - \begin{bmatrix} 16 & 2 \\ -9 & 8 \end{bmatrix}$$
 Substitution
$$= \begin{bmatrix} -4 - 16 & -1 - 2 \\ -3 - (-9) & -7 - 8 \end{bmatrix}$$
 Subtract corresponding elements.
$$= \begin{bmatrix} -20 & -3 \\ 6 & -15 \end{bmatrix}$$
 Simplify.

2. [3 -5 7]

4.
$$\begin{bmatrix} -2 & -18 \\ 11 & 13 \end{bmatrix}$$
 5. $\begin{bmatrix} 7 & 31 & -14 \\ 1 & -6 & 2 \end{bmatrix}$

Example 2 Perform the indicated operations. If the matrix does not exist, write *impossible*.

2-5.

2.
$$\begin{bmatrix} -8 & 2 & 6 \end{bmatrix} + \begin{bmatrix} 11 & -7 & 1 \end{bmatrix}$$
 3. $\begin{bmatrix} 9 & -8 & 4 \end{bmatrix} + \begin{bmatrix} 12 & 2 \end{bmatrix}$

4.
$$\begin{bmatrix} 7 & -12 \\ 15 & 4 \end{bmatrix} - \begin{bmatrix} 9 & 6 \\ 4 & -9 \end{bmatrix}$$

4.
$$\begin{bmatrix} 7 & -12 \\ 15 & 4 \end{bmatrix} - \begin{bmatrix} 9 & 6 \\ 4 & -9 \end{bmatrix}$$
 5. $\begin{bmatrix} 5 & 13 & -6 \\ 3 & -17 & 2 \end{bmatrix} - \begin{bmatrix} -2 & -18 & 8 \\ 2 & -11 & 0 \end{bmatrix}$

ReadingMath

Scalar Think of a scalar as a coefficient for a variable, but instead it is for a matrix.

6.
$$\begin{bmatrix} 18 & 12 & 0 \\ -6 & 42 & -24 \\ -12 & -18 & 21 \end{bmatrix}$$
7.
$$\begin{bmatrix} -90 & 54 & -12 & -18 \\ -36 & 66 & -84 & 12 \end{bmatrix}$$

KeyConcept Multiplying by a Scalar

Words To multiply a matrix by a scalar k, multiply each element by k.

$$k \cdot A = kA$$

Symbols
$$k\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$$

Example
$$-3\begin{bmatrix} 4 & 1 \\ 7 & -2 \end{bmatrix} = \begin{bmatrix} -3(4) & -3(1) \\ -3(7) & -3(-2) \end{bmatrix}$$

Example 3 Multiply a Matrix by a Scalar

If
$$R = \begin{bmatrix} -12 & 8 & 6 \\ -16 & 4 & 19 \end{bmatrix}$$
, find 5R.

$$5R = 5\begin{bmatrix} -12 & 8 & 6 \\ -16 & 4 & 19 \end{bmatrix}$$
 Substitution
$$= \begin{bmatrix} 5(-12) & 5(8) & 5(6) \\ 5(-16) & 5(4) & 5(19) \end{bmatrix}$$
 Distribute the scalar.
$$= \begin{bmatrix} -60 & 40 & 30 \\ -80 & 20 & 95 \end{bmatrix}$$
 Multiply.

erform the indicated operations. If the matrix does not exist, write impossible.

6.
$$3\begin{bmatrix} 6 & 4 & 0 \\ -2 & 14 & -8 \\ -4 & -6 & 7 \end{bmatrix}$$

matrix is regular

So when

scalar, ne way as

symbol.

7.
$$-6$$

$$\begin{bmatrix}
15 & -9 & 2 & 3 \\
6 & -11 & 14 & -2 \\
4 & -8 & -10 & 27
\end{bmatrix}$$

If
$$A = \begin{bmatrix} -9 & 12 \\ 2 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & -8 \\ 2 & -3 \end{bmatrix}$, find $-4B - 3A$.

$$-4B - 3A = -4\begin{bmatrix} -4 & -8 \\ 2 & -3 \end{bmatrix} - 3\begin{bmatrix} -9 & 12 \\ 2 & -6 \end{bmatrix}$$

Substitution

$$= \begin{bmatrix} -4(-4) & -4(-8) \\ -4(2) & -4(-3) \end{bmatrix} - \begin{bmatrix} 3(-9) & 3(12) \\ 3(2) & 3(-6) \end{bmatrix}$$

Distribute the scalars in each matrix.

$$= \begin{bmatrix} 16 & 32 \\ -8 & 12 \end{bmatrix} - \begin{bmatrix} -27 & 36 \\ 6 & -18 \end{bmatrix}$$

Multiply.

$$= \begin{bmatrix} 16 - (-27) & 32 - 36 \\ -8 - 6 & 12 - (-18) \end{bmatrix}$$

Subtract corresponding elements.

$$= \begin{bmatrix} 43 & -4 \\ -14 & 30 \end{bmatrix}$$

Simplify.

Example 4 Use matrices A, B, C, and D to find the following.

$$A = \begin{bmatrix} 6 & -4 \\ 3 & -5 \end{bmatrix}$$

$$B = \begin{bmatrix} 8 & -1 \\ -2 & 7 \end{bmatrix}$$

$$C = \begin{bmatrix} -4 & -6 \\ 12 & -7 \end{bmatrix}$$

8-11. See margin.
$$A = \begin{bmatrix} 6 & -4 \\ 3 & -5 \end{bmatrix}$$
 $B = \begin{bmatrix} 8 & -1 \\ -2 & 7 \end{bmatrix}$ $C = \begin{bmatrix} -4 & -6 \\ 12 & -7 \end{bmatrix}$ $D = \begin{bmatrix} 9 & 6 & 0 \\ -2 & 8 & 0 \end{bmatrix}$

9.
$$-8C + 3A$$

11. $-4C - 5B$ 12a. Test 1: $\begin{bmatrix} 85 \\ 75 \\ 96 \end{bmatrix}$ Test 2: $\begin{bmatrix} 72 \\ 74 \\ 83 \end{bmatrix}$

Example 5

12c. 13 1 13

- 12. GRADES Geraldo, Olivia, and Nikki have had two tests in their math class. The table shows the test grades for each student.
 - a. Write a matrix for the information from each test.
 - **b.** Find the sum of the scores from the two tests expressed as a matrix.
 - ${f c.}$ Express the difference in scores from test 1 to test 2 as a matrix.

Student	Tot 1	10-12
Geraldo	85	72
Olivia	75	74
Nikki	96	83

a. 18572 7579 (a683) b 85+72.

13b. Sample answer: Brand C; it was given the highest rating possible for cost and comfort, and a high rating for looks, and it will last a fairly long time.

Practice and Problem Solving

Extra Practice is on page R3.

- 13. SHOES A consumer service company rated several pairs of shoes by cost, level of Example 1 comfort, look, and longevity using a scale of 1–5, with 1 being low and 5 being high.
- **13a. See margin. a.** Write a 4×4 matrix to organize this information.
 - b. Which shoe would you buy based on this information, and why?
 - c. Would finding the sum of the rows or columns provide any useful information? Explain your reasoning.

Brand	Cost	Comfort	Look	Longevity
А	3	2	2	1
В	4	3 •	2	3
С	5	5	4	4
D	1	5	5	2

Perform the indicated operations. If the matrix does not exist, write *impossible*. 14. $\begin{bmatrix} 6 & 6 \\ -15 & -1 \end{bmatrix}$ Example 2

14.
$$\begin{bmatrix} 12 & -5 \\ -8 & -3 \end{bmatrix} + \begin{bmatrix} -6 & 11 \\ -7 & 2 \end{bmatrix}$$

14.
$$\begin{bmatrix} 12 & -5 \\ -8 & -3 \end{bmatrix} + \begin{bmatrix} -6 & 11 \\ -7 & 2 \end{bmatrix}$$
 15 $\begin{bmatrix} 9 & 5 \\ -2 & 16 \end{bmatrix} + \begin{bmatrix} -6 & -3 & 7 \\ 12 & 2 & -4 \end{bmatrix}$ impossible

13c. Sample answer: Yes; finding the sum of the rows and then calculating the average will provide an easy way to compare the data.

10.	DUDINGOO THE UTHIK MEHU ITOM a last-1000	
	restaurant is shown at the right. The store	
	owner has decided that all of the prices mus	st
	be increased by 10%. a-d. See margin.	

Soda	\$0.95	\$1.00	\$1.05
lced tea	\$0.75	\$0.80	\$0.85
Lemonade	\$0.75	\$0.80	\$0.85
Coffee	\$1.00	\$1.10	\$1.20

Small Medium Large

- a. Write matrix C to represent the current prices.
- **b.** What scalar can be used to determine a matrix *N* to represent the new prices?
- c. Find N.
- **d.** What is N C? What does this represent in this situation?

Use matrices A, B, C, and D to find the following.

17-20.

See margin.
$$A = \begin{bmatrix} 0 & -7 \\ 8 & 12 \end{bmatrix}$$

$$B = \begin{bmatrix} 11 & 4 \\ -3 & -17 \end{bmatrix}$$

$$C = \begin{bmatrix} 8 & 2 & -2 \\ 1 & -9 & 15 \end{bmatrix}$$

$$B = \begin{bmatrix} 11 & 4 \\ -3 & -17 \end{bmatrix} \qquad C = \begin{bmatrix} 8 & 2 & -2 \\ 1 & -9 & 15 \end{bmatrix} \qquad D = \begin{bmatrix} -2 & -8 & 0 \\ 4 & 13 & 1 \end{bmatrix}$$

17.
$$-3B + 2A$$

18.
$$9C - 4D$$

19.
$$2C + 11A$$

20.
$$7A - 2B$$

Example 5

- 21. CSS MODELING Library A has 10,000 novels, 5000 biographies, and 5000 children's books. Library B has 15,000 novels, 10,000 biographies, and 2500 children's books. Library C has 4000 novels, 700 biographies, and 800 children's books. a-d. See margin.
 - a. Express each library's number of books as a matrix. Label the matrices A, B, and C.
 - **b.** Find the total number of each type of book in all 3 libraries. Express as a matrix.
 - **c.** How many more books of each type does Library *A* have than Library *C*?
 - **d.** Find A + B. Does the matrix have meaning in this situation? Explain.

10,000 21a. Library A: 5000 5000 [15,000] Library B: 10,000 2500. 4000 Library C: 700 800 29.000 [6000] 21b. 15,700 21c. 4300 8300 4200 25,0001 The sum represents the combined size of

Additional Answers

Sample answer: this matrix represents the price increases for each item.

17.
$$\begin{bmatrix} -33 & -26 \\ 25 & 75 \end{bmatrix}$$

18.
$$\begin{bmatrix} 80 & 50 & -18 \\ -7 & -133 & 131 \end{bmatrix}$$

20.
$$\begin{bmatrix} -22 & -57 \\ 62 & 118 \end{bmatrix}$$

