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* Properties of Logarithms : 2
oo fBone 3.4 Properties of Logarithms

¢ Change of Base

® Graphs of Logarithmic
Functions with Base b

Properties of Logarithms

Let b, R, and S be positive real numbers with » # 1, and ¢ any real number.
- * Product rule: logs, (RS) = logy R + log, S
R
* Quotient rule: Ioghg = logp R — logp S

« Power rule: log, R = clog, R

EXAMPLE 1 Proving the Produet Rule for Logarithms

Prove log;, (RS) = logy R + log; S.



Properties of Logarithms

Let b, R, and S be positive real numbers with b # 1. an

* Product rule: logy (RS) = logy R + logy §
= Quotient rule: lcgg,% = logy R — log; §
* Power rule: logy, R° = clogy R

37. Prove the quotient rule of logarithms.

38. Prove the power rule of logarithms.
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d ¢ any real number.



EXAMPLE 3 Expanding the Logarithm of a Quotient
Assuming x is positive, use properties of logarithms to write In (\ v + 5/x) asa
sum or difference of logarithms or multiples of logarithms.
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SOLUTION In In
o X

= In (x° + 5)"': —Inx Quotient rule

= %ln (x2+5) — Inx Power rule \“ 3 . V

Now try Exercise 9. 2

multiples of logarithms.
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In Exercises 13-22, assuming x, v, and
logarithms to write the expression as a single logarithm.
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logx + logy
logx + log 5
Iny —In3
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log x
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2Inx + 3Iny
4logy — logz
4 log (xy) — 3log (¥z)
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EXAMPLE 4 Condensing a Logarithmic Expression

Assuming x and y are positive, write In x°

SOLUTION

Inx”

— 21In(x
— 2In(xy) = Inx* — In (xy)?
=Inx’ —In (.1':_\':)
= In \V‘l»
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y) as a single logarithm.

Now try Exercise 13.
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Change-of-Base Formula for Logarithms

For positive real numbers @, b, and xwitha # 1 and b # 1,

logpx =

EXAMPLE 5 Evaluating Logarithms by Changing the Base

(@) Iog;lﬁ—%—253 ~ 252 16 di.‘:wbj
log10 1 aewn \W G~ .“b Op\

= 1.285... = 1.29
log6 logb \ a -\ b
In2 In2 In2 Oﬂ 0:’

] 2 = = = = —1 Now try E; se 23.
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In Exercises 23-28, use the change-of-base formula and your calculator @ al
to evaluate the logarithm.
23, log) 7 24. logs 19 ? £ - ;
-
25. logg 175 26. logyp 259 2

(b) logg 10 =

27. loggs 12 28. loggz 29




We've looked at graphs of logarithms, but what happens if
the base is between 0 and 1 ?
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In Exercises 3942, describe how to transform the graph of
g(x) = Inxinto the graph of the given function. Sketch the graph by
hand and support with a grapher.

39. f(x) = loggx 10. f(x) = logyx
11. f(x) = logzax 12. f(x) = logysx
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In Exercises 43—46, match the function with its graph. Identify the win-
ow dimensions, Xscl, and Yscl of the graph.

M\E"‘Qc—’;g 13. f(x) = logs (2 — _‘_)"'O 11, f(x) = logg (x — 3)

15. f(x) = logos (x — 27) 16. f(x) = logg7 (3 — x)q @,9)
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