What you'll learn about

- Properties of Logarithms
- · Change of Base
- · Graphs of Logarithmic Functions with Base b

3.4 Properties of Logarithms

Properties of Logarithms

Let b, R, and S be positive real numbers with $b \neq 1$, and c any real number.

Product rule:

 $\log_b(RS) = \log_b R + \log_b S$

 $\log_b \frac{R}{S} = \log_b R - \log_b S$ · Quotient rule:

 $\log_b R^c = c \log_b R$ · Power rule:

EXAMPLE 1 Proving the Product Rule for Logarithms

Prove $\log_b(RS) = \log_b R + \log_b S$.

Prove
$$\log_b(RS) = \log_b R + \log_b S$$
.

$$b^{\times} = R$$

$$\log_b S = Y$$

$$\log_b S$$

Properties of Logarithms

Let b, R, and S be positive real numbers with $b \neq 1$, and c any real number.

- Product rule: $\log_b(RS) = \log_b R + \log_b S$
- Quotient rule: $\log_b \frac{R}{S} = \log_b R \log_b S$
- Power rule: $\log_b R^c = c \log_b R$
- 37. Prove the quotient rule of logarithms.
- 38. Prove the power rule of logarithms.

37

$$b^{x} = R$$
 $b^{y} = D$
 $|99|b^{R} = x$ $|99|b^{S} = y$
 $|99|b^{R} = x - y = |99|b^{S}$
 $= x - y = |99|b^{S}$

(nt)

$$b^{\times} = R$$

$$|00\rangle_{b} = |00\rangle_{b} = |00\rangle_{b}$$

$$|00\rangle_{b} = |00\rangle_{b} = |00\rangle_{b}$$

$$= |00\rangle_{b} = |00\rangle_{b} = |00\rangle_{b}$$

$$= |00\rangle_{b} = |00\rangle_{b} = |00\rangle_{b}$$

EXAMPLE 3 Expanding the Logarithm of a Quotient

Assuming x is positive, use properties of logarithms to write $\ln(\sqrt{x^2 + 5}/x)$ as a sum or difference of logarithms or multiples of logarithms.

SOLUTION
$$\ln \frac{\sqrt{x^2 + 5}}{x} = \ln \frac{(x^2 + 5)^{1/2}}{x}$$

= $\ln (x^2 + 5)^{1/2} - \ln x$ Quotient rule
= $\frac{1}{2} \ln (x^2 + 5) - \ln x$ Power rule

Now try Exercise 9

In Exercises 1–12, assuming x and y are positive, use properties of logarithms to write the expression as a sum or difference of logarithms or multiples of logarithms.

- 1. ln 8x
- $3.\log \frac{3}{}$
- 5. $\log_2 y^5$
- 7. $\log x^3y^2$
- 9. $\ln \frac{x^2}{x^3}$
- 11. $\log \sqrt[4]{\frac{x}{y}}$

- 6. $\log_2 x^{-2}$
- 8. $\log xy^3$
- 10. $\log 1000x^4$

109×3+109 3109×+21097

EXAMPLE 4 Condensing a Logarithmic Expression

Assuming x and y are positive, write $\ln x^5 - 2 \ln (xy)$ as a single logarithm.

SOLUTION
$$\ln x^5 - 2 \ln (xy) = \ln x^5 - \ln (xy)^2$$
 Power rule
$$= \ln x^5 - \ln (x^2y^2)$$

$$= \ln \frac{x^5}{x^2y^2}$$
 Quotient rule
$$= \ln \frac{x^3}{y^2}$$

Now try Exercise 13.

In Exercises 13–22, assuming x, y, and z are positive, use properties of logarithms to write the expression as a single logarithm.

13.
$$\log x + \log y$$

14.
$$\log x + \log 5$$

15.
$$\ln y - \ln 3$$

16.
$$\ln x - \ln y$$

17.
$$\frac{1}{3} \log x$$

18.
$$\frac{1}{5}\log z$$

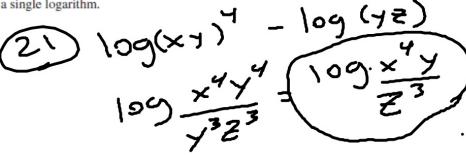
19.
$$2 \ln x + 3 \ln y$$

20.
$$4 \log y - \log z$$

21.
$$4 \log(xy) - 3 \log(yz)$$

22.
$$3 \ln (x^3y) + 2 \ln (yz^2)$$

19/nx2y3



(1y) 1907 5x

1907 x/3 = 109 1/x

Change-of-Base Formula for Logarithms

For positive real numbers a, b, and x with $a \ne 1$ and $b \ne 1$,

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

EXAMPLE 5 Evaluating Logarithms by Changing the Base

(a)
$$\log_3 16 = \frac{\ln 16}{\ln 3} = 2.523... \approx 2.52$$

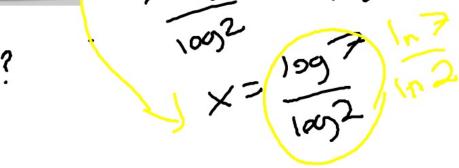
(b)
$$\log_6 10 = \frac{\log 10}{\log 6} = \frac{1}{\log 6} = 1.285... \approx 1.29$$

(c)
$$\log_{1/2} 2 = \frac{\ln 2}{\ln (1/2)} = \frac{\ln 2}{\ln 1 - \ln 2} = \frac{\ln 2}{-\ln 2} = -1$$
 Now try Exercise 23.

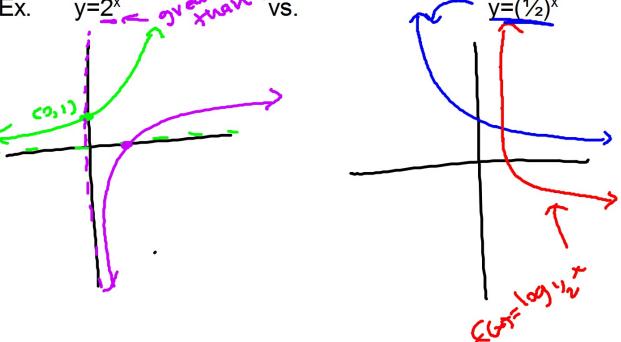
(a) $\log_3 16 = \frac{1}{\ln 3} = 2.523... \approx 2.52$ (b) $\log_6 10 = \frac{\log 10}{\log 6} = \frac{1}{\log 6} = 1.285... \approx 1.29$ (c) $\log_{10} 2 = \frac{\ln 2}{\log 6} = \frac{\ln 2}{\log$

In Exercises 23-28, use the change-of-base formula and your calculator to evaluate the logarithm.

- 23. log₂ 7
- 24. log₅ 19
- 25. log₈ 175
- 26. log₁₂ 259
- 27. log_{0.5} 12
- 28. log_{0.2} 29



We've looked at graphs of logarithms, but what happens if the base is between 0 and 1...?



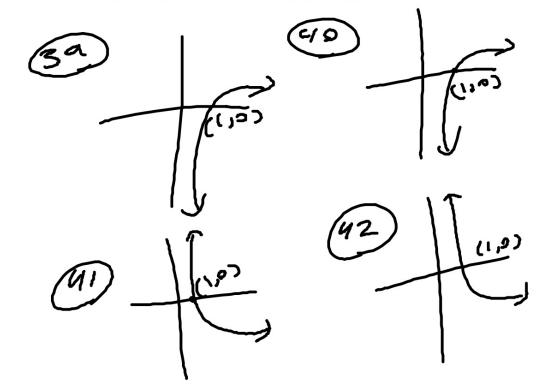
In Exercises 39–42, describe how to transform the graph of $g(x) = \ln x$ into the graph of the given function. Sketch the graph by hand and support with a grapher.

39.
$$f(x) = \log_4 x$$

40.
$$f(x) = \log_7 x$$

41.
$$f(x) = \log_{1/3} x$$

42.
$$f(x) = \log_{1/5} x$$



In Exercises 43-46, match the function with its graph. Identify the window dimensions, Xscl, and Yscl of the graph.

43. $f(x) = \log_4 (2 - x)$ 44. $f(x) = \log_6 (x - 3)$ 45. $f(x) = \log_{0.5} (x - 2)$ 46. $f(x) = \log_{0.7} (3 - x)$

45.
$$f(x) = \log_{0.5}(x - 2)$$

