3.7 Implicit Differentiation

Explicit verses implicit; what's the difference?

Ex. A function where y is expressed *explicitly*;

Ex. A function where y is expressed *implicitly*;

$$\frac{4}{4}\left(y=3\times 4\right)$$

$$\frac{4}{4}\left(y=3\times 4\right)$$

in this context, "implicit" means "hidden."

BTW, we don't always have to derive implicitly...

EXAMPLE 1 Differentiating Implicitly

Find dy/dx if $y^2 = x$.

SOLUTION

To find dy/dx, we simply differentiate both sides of the equation $y^2 = x$ with respect to x, treating y as a differentiable function of x and applying the Chain Rule:

$$y^{2} = x$$

$$2y\frac{dy}{dx} = 1$$

$$\frac{d}{dx}(y^{2}) = \frac{d}{dy}(y^{2}) \cdot \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{2y}.$$
Now try Exercise 3.

...sometimes, though, you *have* to derive implicitly. (what if we can't solve for y?)

Implicit Differentiation Process

- 1. Differentiate both sides of the equation with respect to x.
- 2. Collect the terms with dy/dx on one side of the equation.
- 3. Factor out dy/dx.
- **4.** Solve for dy/dx.

Think algebraic; to solve for dy/dx, get it by itself!

$$x^{2} - xy + y^{2} = 7$$

$$\frac{d}{dx}(x^{2}) - \frac{d}{dx}(xy) + \frac{d}{dx}(y^{2}) = \frac{d}{dx}(7)$$
Differentiate both sides with respect to x ...
$$2x - \left(x\frac{dy}{dx} + y\frac{dx}{dx}\right) + 2y\frac{dy}{dx} = 0$$
... treating xy as a product and y as a function of x .
$$(2y - x)\frac{dy}{dx} = y - 2x$$
Collect terms.
$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}.$$
 Solve for $\frac{dy}{dx}$.

In Exercises 1–8, find dy/dx.

4.
$$\frac{y}{x} - (x+y)^2$$
 or $\frac{1-3x^2-2xy}{x^2+1}$

1.
$$x^2y + xy^2 = 6$$
 $-\frac{2xy + y^2}{2xy + x^2}$

1.
$$x^2y + xy^2 = 6$$
 $\frac{2xy + y^2}{2xy + x^2}$ 2. $x^3 + y^3 = 18xy$ $\frac{6y - x^2}{y^2 - 6x}$
3. $y^2 = \frac{x - 1}{x + 1}$ $\frac{1}{y(x + 1)^2}$ 4. $x^2 = \frac{x - y}{x + y}$
5. $x = \tan y \cos^2 y$ 6. $x = \sin y \sec y$

3.
$$y^2 = \frac{x-1}{x+1}$$
 $\frac{1}{y(x+1)^2}$

4.
$$x^2 = \frac{x - y}{x + y}$$

5.
$$x = \tan y \cos^2 y$$

$$6. x = \sin y \quad \sec y$$

7.
$$x + \tan(xy) = 0$$
 See page 164. 8. $x + \sin y = xy$ $\frac{1-y}{x - \cos y}$

$$Q = x^2$$
 $Q = y$ $Q' = 1$ $Q' = 1$ $Q' = 1$ $Q' = 1$

$$2xy + x^{2}dy + y^{2}dy = 0$$

$$2xy + x^{2}dy + y^{2}dy = -2xy - y^{2}$$

$$x^{2}dy + 2xy dx = -2xy - y^{2}$$

$$x^{3}dx + 2xy dx = -2xy - y^{2}$$

$$x^{2}dx + 2xy = -2xy - y^{2}$$

$$x^{2}dx + 2xy = -2xy - y^{2}$$

$$x^{2}dx + 2xy = -2xy - y^{2}$$

$$\frac{dY}{dx} = \frac{-2xy^{-y}}{x^2 + 2xy}$$

In Exercises 1–8, find dy/dx.

1.
$$x^2y + xy^2 = 6$$

3.
$$y^2 = \frac{x-1}{x+1}$$

5.
$$x = \tan y$$

7.
$$x + \tan(xy) = 0$$

product rule...

2.
$$x^3 + y^3 = 18xy$$

4.
$$x^2 = \frac{x - y}{x + y}$$

6.
$$x = \sin y$$

8.
$$x + \sin y = xy$$
 cosy cosy.

$$3)\sqrt{y^2} = \sqrt{\frac{x-1}{x+1}}$$

$$\frac{1}{2} = \frac{1}{2} \sqrt{\frac{x-1}{x+1}}$$

$$y^2 = \frac{x-1}{x+1}$$

$$R_{\frac{\partial}{\partial x}}\left(y^{2}\right) = \frac{\partial}{\partial x}\left(\frac{x-1}{x+1}\right)$$

$$\frac{2y}{dx} = \frac{2y}{2y}$$

$$\frac{dy}{dx} = \frac{2}{2y(x+1)^2} \frac{y(x+1)}{y(x+1)}$$

7.
$$x + \tan(xy) = 0$$

$$\frac{d}{dx} + \cos(x) = 5ec^{2}(u) \cdot u'$$

$$u = x \times x$$

$$u' = (1)(x) + dx(x)$$

$$v' = (1)(x) + dx(x)$$

$$v' = x \times y = -4x$$

$$v' = 1 \quad y = 4x$$

$$v' = 1 \quad y = 0$$

$$v' = 1$$

EXAMPLE 2 Finding Slope on a Circle

Find the slope of the circle $x^2 + y^2 = 25$ at the point (3, -4).

SOLUTION

The circle is not the graph of a single function of x, but it is the union of the graphs of two differentiable functions, $y_1 = \sqrt{25 - x^2}$ and $y_2 = -\sqrt{25 - x^2}$ (Figure 3.49). The point (3, -4) lies on the graph of y_2 , so it is possible to find the slope by calculating explicitly:

$$\frac{dy_2}{dx}\Big|_{x=3} = -\frac{-2x}{2\sqrt{25-x^2}}\Big|_{x=3} = -\frac{-6}{2\sqrt{25-9}} = \frac{3}{4}.$$

But we can also find this slope more easily by differentiating both sides of the equation of the circle implicitly with respect to x:

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25)$$
 Differentiate both sides with respect to x.

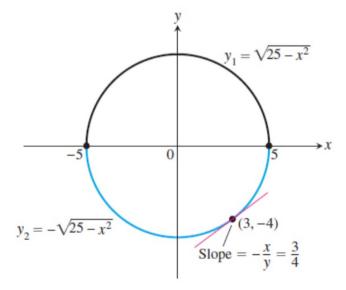
$$2x + 2y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}.$$

The slope at (3, -4) is

$$-\frac{x}{y}\Big|_{(3,-4)} = -\frac{3}{-4} = \frac{3}{4}$$

Note: when evaluating, plug in values for x AND y.



In Exercises 9–12, find dy/dx and find the slope of the curve at the

9.
$$x^2 + v^2 = 13$$
. (-2, 3) $\frac{dy}{dx} = -\frac{x}{y}$, 2/3

10.
$$x^2 + y^2 = 9$$
, (0, 3) $\frac{dy}{dx} = -\frac{x}{y}$, 0

indicated point.
$$\frac{dy}{dx} = -\frac{x}{y}, \frac{2}{3}$$
9. $x^2 + y^2 = 13$, $(-2, 3)$ $\frac{dy}{dx} = -\frac{x}{y}$, 0
10. $x^2 + y^2 = 9$, $(0, 3)$ $\frac{dy}{dx} = -\frac{x}{y}$, 0
11. $(x - 1)^2 + (y - 1)^2 = 13$, $(3, 4)$ $\frac{dy}{dx} = -\frac{x - 1}{y - 1}$, $-\frac{2}{3}$

12.
$$(x+2)^2 + (y+3)^2 = 25$$
, $(1, -7)$ See page 164.

In Exercises 9–12, find dy/dx and find the slope of the curve at the indicated point.

9.
$$x^2 + y^2 = 13$$
, $(-2, 3)$

10.
$$x^2 + y^2 = 9$$
, (0, 3)

11.
$$(x-1)^2 + (y-1)^2 = 13$$
, (3, 4)

12.
$$(x+2)^2 + (y+3)^2 = 25$$
, $(1, -7)$

EXAMPLE 3 Solving for dy/dx

Show that the slope dy/dx is defined at every point on the graph of $2y = x^2 + \sin y$.

SOLUTION

First we need to know dy/dx, which we find by implicit differentiation:

$$\frac{d}{dx}(2y) = \frac{d}{dx}(x^2 + \sin y)$$
Differentiate both sides with respect to x ...
$$= \frac{d}{dx}(x^2) + \frac{d}{dx}(\sin y)$$

$$2\frac{dy}{dx} = 2x + \cos y \frac{dy}{dx}$$
... treating y as a function of x and using the Chain Rule.
$$2\frac{dy}{dx} - (\cos y)\frac{dy}{dx} = 2x$$
Collect terms with dy/dx ...
$$(2 - \cos y)\frac{dy}{dx} = 2x$$
and factor out dy/dx .
$$\frac{dy}{dx} = \frac{2x}{2 - \cos y}$$
. Solve for dy/dx by dividing.

The formula for dy/dx is defined at every point (x, y), except for those points at which $\cos y = 2$. Since $\cos y$ cannot be greater than 1, this never happens.

Now try Exercise 13.

In Exercises 13–16, find where the slope of the curve is defined.

13.
$$x^2y - xy^2 = 4$$

14.
$$x = \cos y$$

15.
$$x^3 + y^3 = xy$$

15.
$$x^3 + y^3 = xy$$
 16. $x^2 + 4xy + 4y^2 - 3x = 6$

it'll be easier to find where the derivative is UNdefined...

In Exercises 17–26, find the lines that are (a) tangent and

(b) normal to the curve at the given point.
17.
$$x^2 + xy - y^2 = 1$$
, (2, 3) (a) $y = \frac{7}{4}x - \frac{1}{2}$ (b) $y = -\frac{4}{7}x + \frac{29}{7}$

18.
$$x^2 + y^2 = 25$$
, (3, -4) (a) $y = \frac{3}{4}x - \frac{25}{4}$ (b) $y = -\frac{4}{3}x$
19. $x^2y^2 = 9$, (-1, 3)

19.
$$x^2y^2 = 9$$
, $(-1, 3)$
See page 164.

In Exercises 13-16, find where the slope of the curve is defined.

3.
$$\frac{x^2y}{x^3 + y^3} = xy$$

14.
$$x = \cos y$$

$$y^2 - 3x = 6$$
 $\frac{dy}{dx} = y'$

it'll be easier to find where the derivative is UNdefined...

In Exercises 17-26, find the lines that are (a) tangent and

(b) normal to the curve at the given point.

17.
$$x^2 + xy - y^2 = 1$$
, (2, 3) (a) $y = \frac{7}{4}x - \frac{1}{2}$ (b) $y = -\frac{4}{7}x + \frac{29}{7}$ do part (a) only...

18.
$$x^2 + y^2 = 25$$
, (3, -4) (a) $y = \frac{3}{4}x - \frac{25}{4}$ (b) $y = -\frac{4}{3}x$

19.
$$x^2y^2 = 9$$
, (-1, 3)

$$(10) \times^2 y^2 = 9$$

$$S = x^{2} = y^{2}$$

$$\frac{-(32=3)}{(-1)} = 3(x-(-1))$$

EXAMPLE 5 Finding a Second Derivative Implicitly

Find d^2y/dx^2 if $2x^3 - 3y^2 = 8$.

SOLUTION

To start, we differentiate both sides of the equation with respect to x in order to find y' = dy/dx.

$$\frac{d}{dx}(2x^3 - 3y^2) = \frac{d}{dx}(8)$$

$$6x^2 - 6yy' = 0$$

$$x^2 - yy' = 0$$

$$y' = \frac{x^2}{y}, \text{ when } y \neq 0$$

We now apply the Quotient Rule to find y''.

$$y'' = \frac{d}{dx} \left(\frac{x^2}{y} \right) = \frac{2xy - x^2y'}{y^2} = \frac{2x}{y} - \frac{x^2}{y^2} \cdot y'$$

Finally, we substitute $y' = x^2/y$ to express y'' in terms of x and y.

$$y'' = \frac{2x}{y} - \frac{x^2}{y^2} \left(\frac{x^2}{y} \right) = \frac{2x}{y} - \frac{x^4}{y^3}$$
, when $y \neq 0$

Now try Exercise 29.

In Exercises 27–30, use implicit differentiation to find dy/dx and then d^2y/dx^2 .

27.
$$x^2 + y^2 = 1$$
 See page 164. **28.** $x^{2/3} + y^{2/3} = 1$ See page 164.

29.
$$y^2 = x^2 + 2x$$
 See page 164. 30. $y^2 + 2y = 2x + 1$ See page 164.

In Exercises 27–30, use implicit differentiation to find dy/dx and then d^2y/dx^2 .

27.
$$x^2 + y^2 = 1$$

28.
$$x^{2/3} + y^{2/3} = 1$$

29.
$$y^2 = x^2 + 2x$$

30.
$$y^2 + 2y = 2x + 1$$

In Exercises 31–42, find dy/dx.

31.
$$y = x^{9/4}$$
 (9/4) $x^{5/4}$

33.
$$v = \sqrt[3]{x}$$
 (1/3) $x^{-2/3}$

35.
$$y = (2x + 5)^{-1/2} - (2x + 5)^{-3/2}$$

37.
$$y = x\sqrt{x^2 + 1}$$

 $x^2(x^2 + 1)^{-1/2} + (x^2 + 1)^{1/2}$

39.
$$y = \sqrt{1 - \sqrt{x}}$$

41.
$$y = 3(\csc x)^{3/2}$$

31.
$$y = x^{9/4}$$
 $(9/4)x^{5/4}$ **32.** $y = x^{-3/5}$ $(-3/5)x^{-8/5}$

33.
$$y = \sqrt[3]{x}$$
 (1/3) $x^{-2/3}$ 34. $y = \sqrt[4]{x}$ (1/4) $x^{-3/4}$

35.
$$y = (2x + 5)^{-1/2} - (2x + 5)^{-3/2}$$
 36. $y = (1 - 6x)^{2/3} - 4(1 - 6x)^{-1/3}$

37.
$$y = x\sqrt{x^2 + 1}$$
 $x^2(x^2 + 1)^{-1/2} + (x^2 + 1)^{1/2}$ 38. $y = \frac{x}{\sqrt{x^2 + 1}}$ $(x^2 + 1)^{-3/2}$

40.
$$y = 3(2x^{-1/2} + 1)^{-1/3}$$

42.
$$y = [\sin(x+5)]^{5/4}$$