4-2 Solving Quadratic Equations by Graphing

C

Solve Quadratic Equations Quadratic equations are quadratic functions that are set equal to a value. The **standard form** of a quadratic equation is $ax^2 + bx + c = 0$, where $a \neq 0$ and a, b, and c are integers.

The solutions of a quadratic equation are called the **roots** of the equation. One method for finding the roots of a quadratic equation is to find the **zeros** of the related quadratic function.

The zeros of the function are the *x*-intercepts of its graph.

$$f(x) = x^2 - x - 6$$

$$f(-2) = (-2)^2 - (-2) - 6$$
 or 0
 $f(3) = 3^2 - 3 - 6$ or 0

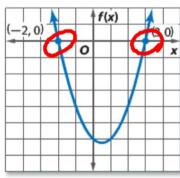
-2 and 3 are zeros of the function.

Quadratic Equation

$$x^2 - x - 6 = 0$$

$$(-2)^2 - (-2) - 6$$
 or 0
 $3^2 - 3 - 6$ or 0

-2 and 3 are roots of the equation.



The *x*-intercepts are -2 and 3.

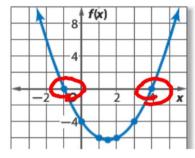
Example 1 Two Real Solutions

Solve $x^2 - 3x - 4 = 0$ by graphing.

Graph the related function, $f(x) = x^2 - 3x - 4$. The equation of the axis of symmetry is $x = -\frac{-3}{2(1)}$ or 1.5. Make a table using *x*-values around 1.5. Then graph each point.

	Ж	-1	0	1	1.5	2	3	4	1
	f(x)	0	-4	-6	-6.25	-6	-4	0	!
•								3	

The zeros of the function are -1 and 4. Therefore, the solutions of the equation are -1 and 4 or $\{x \mid x = -1, 4\}$.



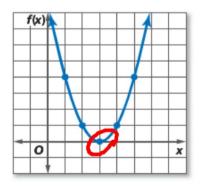
Example 2 One Real Solution

Solve $14 - x^2 = -6x + 23$ by graphing.

$$14 - x^2 = -6x + 23$$
 Original equation
$$14 = x^2 - 6x + 23$$
 Add x^2 to each side.
$$0 = x^2 - 6x + 9$$
 Subtract 14.

Graph the related function $f(x) = x^2 - 6x + 9$.

I	X	1	2	3	4	5
l	f(x)	4	1	0	1	4
-						



The function has only one zero, 3. Therefore, the solution is 3 or $\{x \mid x = 3\}$.

Example 3 No Real Solution

NUMBER THEORY Use a quadratic equation to find two real numbers with a sum of 15 and a product of 63.

Understand Let *x* represent one of the numbers. Then 15 - x is the other number.

Plan

$$x(15-x)=63$$

The product of the numbers is 63.

$$15x - x^2 = 63$$

Distributive Property

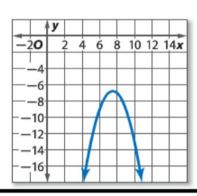
$$-x^2 + 15x - 63 = 0$$

Subtract 63.

Solve Graph the related function.

The graph has no *x*-intercepts. This means the original equation has no real solution. Thus, it is not possible for two real numbers to have a sum of 15 and a product of 63.

Check Try finding the product of several pairs of numbers with sums of 15. Is each product less than 63 as the graph suggests?

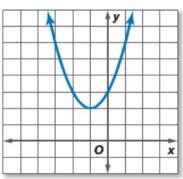


Example 1

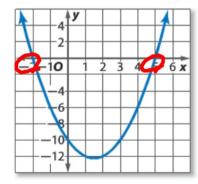
Use the related graph of each equation to determine its solutions.

1. no real solution

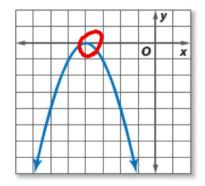
1.
$$x^2 + 2x + 3 = 0$$



2.
$$x^2 - 3x - 10 = 0$$
 -2, 5 3. $-x^2 - 8x - 16 = 0$ **-4**



3.
$$-x^2 - 8x - 16 = 0$$
 -4

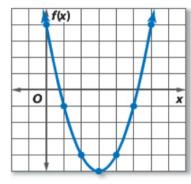


Example 4 Estimate Roots

Solve $x^2 - 6x + 4 = 0$ by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are located.

X	0	1	2	3	4	5	6
f(x)	4	-1	-4	-5	-4	-1	4

The *x*-intercepts of the graph indicate that one solution is between 0 and 1, and the other solution is between 5 and 6.



Examples 2-5 CCSS PRECISION Solve each equation. If exact roots cannot be found, state the consecutive integers between which the roots are located. 4-11. See margin.

4.
$$x^2 + 8x = 0$$

6.
$$4x - x^2 + 8 = 0$$

7.
$$-12 - 5x + 3x^2 = 0$$

8.
$$x^2 - 6x + 4 = -8$$

9.
$$9 - x^2 = 12$$

10.
$$5x^2 + 10x - 4 = -6$$

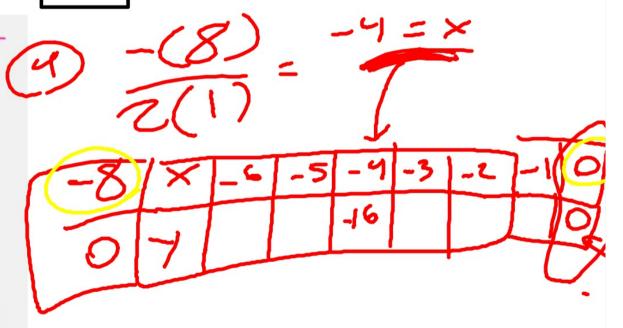
11.
$$x^2 - 20 = 2 + x$$

12. NUMBER THEORY Use a quadratic equation to find two real numbers with a sum of 2 and a product of -24.

Additional Answers

4-11. See Ch. 4 Answer Appendix for graphs.

- **6.** between -2 and -1, between 5 and 6
- 7. between -2 and -1, 3
- 8. no real solution
- 9. no real solution
- **10.** between -2 and -1, between -1and 0
- **11.** between -5 and -4, between 5 and 6



Examples 2-5 CSS PRECISION Solve each equation. If exact roots cannot be found, state the consecutive integers between which the roots are located. 4-11. See margin.

4.
$$x^2 + 8x = 0$$

6.
$$4x - x^2 + 8 = 0$$

8.
$$x^2 - 6x + 4 = -8$$

10.
$$5x^2 + 10x - 4 = -6$$

5
$$x^2 - 3x - 18 = 0$$

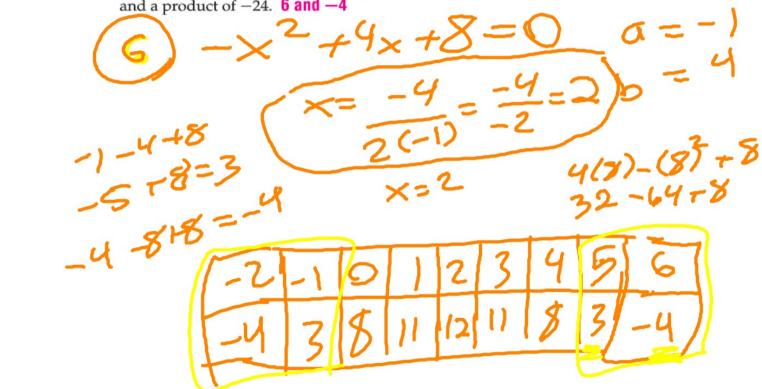
7. $-12 - 5x + 3x^2 = 0$
9. $9 - x^2 = 12$

7.
$$-12 - 5x + 3x^2 = 0$$

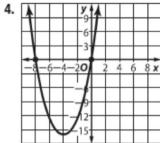
9.
$$9 - x^2 = 12$$

11.
$$x^2 - 20 = 2 + x$$

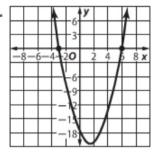
12. NUMBER THEORY Use a quadratic equation to find two real numbers with a sum of 2 and a product of -24. $\hat{6}$ and -4



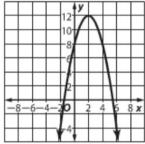
Lesson 4-2

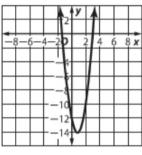


5.

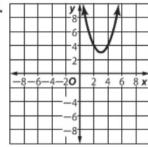


6.

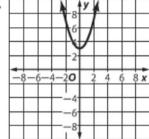




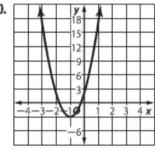
8.

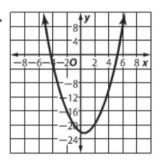


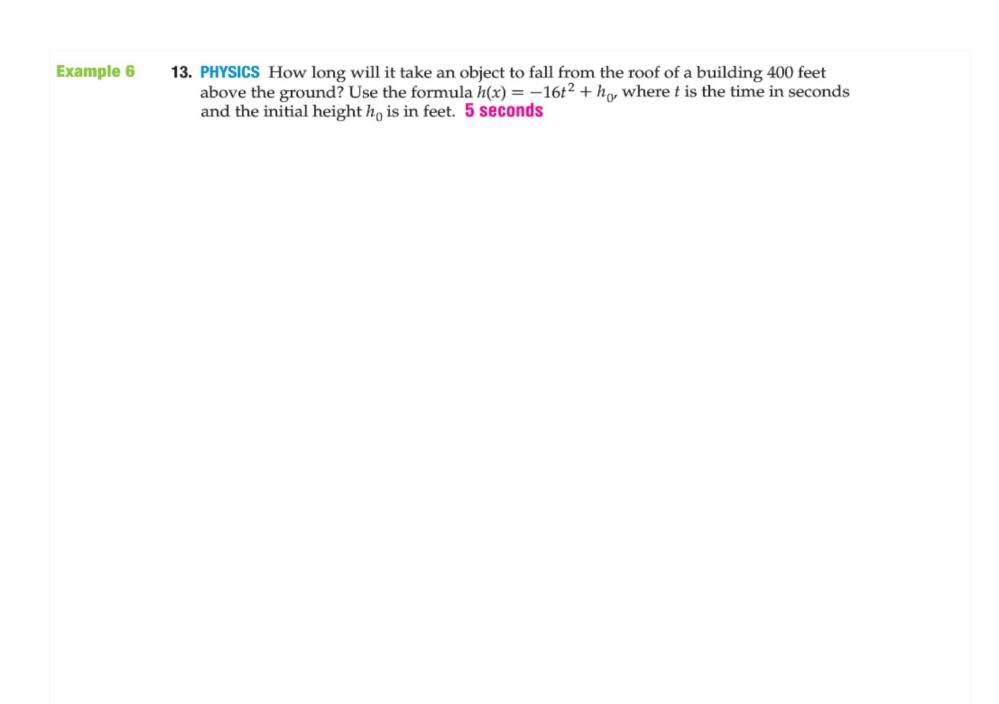
9.



10.





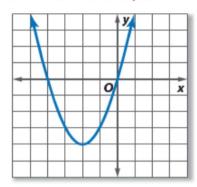


Example 1

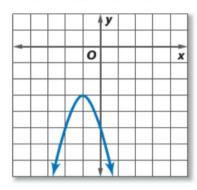
Use the related graph of each equation to determine its solutions.

15. no real solution

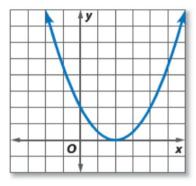
14.
$$x^2 + 4x = 0$$
 -4, 0



15.
$$-2x^2 - 4x - 5 = 0$$

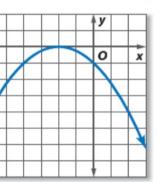


14.
$$x^2 + 4x = 0$$
 -4. 0 15. $-2x^2 - 4x - 5 = 0$ **16.** $0.5x^2 - 2x + 2 = 0$ **2**

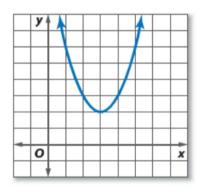


18. no real solution

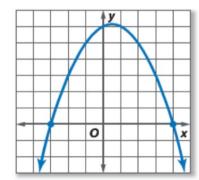
17.
$$-0.25x^2 - x - 1 = 0$$
 -2 18. $x^2 - 6x + 11 = 0$



18.
$$x^2 - 6x + 11 = 0$$



19.
$$-0.5x^2 + 0.5x + 6 = 0$$
 -3, 4



hples 2-4 Solve each equation. If exact roots cannot be found, state the consecutive integers between which the roots are located. 20-29. See Chapter 4 Answer Appendix for graphs.

20.
$$x^2 = 5x$$
 0. 5

22.
$$x^2 - 5x - 14 = 0$$
 -2. 7

24.
$$x^2 - 18x = -81$$
 9

26.
$$2x^2 - 3x - 15 = 4$$
 between -3 and -2

28.
$$-0.5x^2 + 3 = -5x - 2$$

21.
$$-2x^2 - 4x = 0$$
 -2, 0

23.
$$-x^2 + 2x + 24 = 0$$
 -4, 6

25.
$$2x^2 - 8x = -32$$
 no real solution

26.
$$2x^2 - 3x - 15 = 4$$
 between -3 and -2 and between 3 and 4 **27.** $-3x^2 - 7 + 2x = -11$ between -1 and 0 and between 1 and 2

29.
$$-2x + 12 = x^2 + 16$$
 no real solution

28. $-0.5x^2 + 3 = -5x - 2$ **28.** between **-1** and **0** and between **10** and **11**

Use the tables to determine the location of the zeros of each quadratic function. Example 5

between -6 and -5; between -4 and -3

between 0 and 1; between 2 and 3

between -3 and 0; between 6 and 9

Example 6 NUMBER THEORY Use a quadratic equation to find two real numbers that satisfy each situation, or show that no such numbers exist.

- **33** Their sum is -15, and their product is -54. **3 and -18**
- **34.** Their sum is 4, and their product is -117. **13 and -9**
- **35.** Their sum is 12, and their product is -84. **about -5 and 17**
- **36.** Their sum is -13, and their product is 42. -6 and -7
- **37.** Their sum is -8 and their product is -209. **11 and -19**

