

KeyConcept Point-Slope Form

Words The linear equation $y - y_1 = m(x - x_1)$ is written in

point-slope form, where (x_1, y_1) is a given point on a

nonvertical line and *m* is the slope of the line.

Symbols $y - y_1 = m(x - x_1)$

Check Your Understanding

= Step-by-Step Solutions begin on page R13.

Write an equation in point-slope form for the line that passes through the given Example 1 point with the slope provided. Then graph the equation. 1-3. See Ch. 4 Answer Appendix.

2.
$$(-2, -8)$$
, slope $\frac{5}{6}$

3.
$$(4,3)$$
, slope $-\frac{1}{2}$

Inderstanding

ite an equation in point-slope form for the line that passes throint with the slope provided. Then graph the equation. 1-3. Se

$$(-2, 5)$$
, slope -6

2.
$$(-2, -8)$$
, slope $\frac{5}{6}$

ite each eq

$$y + 2 = \frac{7}{8}$$

7x - 8y =

ite each eq

$$y - 10 = 4$$

Lesson 4-3

2. $y + 8 = \frac{5}{6}(x + 2)$

3.
$$y-3=-\frac{1}{2}(x-4)$$

-y-(-8) -y+8

EXAMPLE 2 Writing an Equation in Standard Form

Write
$$y = \frac{3}{4}x - 5$$
 in standard form.

In standard form, the variables are on the left side of the equation. A, B, and C are all integers.

$$y=\frac{3}{4}x-5$$

Original equation

$$4(y) = 4\left(\frac{3}{4}x - 5\right)$$

Multiply each side by 4 to eliminate the fraction.

$$4y = 3x - 20$$

Distributive Property

EXAMPLE 2 Writing an Equation in Standard Form

$$4y - 3x = 3x - 20 - 3x$$
 Subtract 3x from each side.

$$-3x + 4y = -20$$
 Simplify.

$$3x - 4y = 20$$
 Multiply each side by -1 .

EXAMPLE 2 Check Your Progress

Write y - 3 = 2(x + 4) in standard form.

A.
$$-2x + y = 5$$

B.
$$-2x + y = 11$$

C.
$$2x - y = -11$$

D.
$$2x + y = 11 - (-2x + 7)^{-(1)}$$

EXAMPLE 2 Check Your Progress

Write y - 3 = 2(x + 4) in standard form.

A.
$$-2x + y = 5$$

B.
$$-2x + y = 11$$

D.
$$2x + y = 11$$

EXAMPLE 3 Writing an Equation in Slope-Intercept Form

Write
$$y - 5 = \frac{4}{3}(x - 3)$$
 in slope-intercept form.
 $y - 5 = \frac{4}{3}(x - 3)$ Original equation

$$y-5=\frac{4}{3}(x-3)$$

$$y-5=\frac{4}{3}x-4$$
 Distributive Property

$$y-5+5=\frac{4}{3}x-4+5$$
 Add 5 to each side.

EXAMPLE 3 Writing an Equation in Slope-Intercept Form

$$y = \frac{4}{3}x + 1$$
 Simplify.

Answer: The slope-intercept form of the equation is

$$y=\frac{4}{3}x+1.$$

EXAMPLE 3 Check Your Progress

Write 3x + 2y = 6 in slope-intercept form.

A.
$$y = -\frac{3}{2}x + 3$$

B.
$$y = -3x + 6$$

C.
$$y = -3x + 3$$

D.
$$y = 2x + 3$$

EXAMPLE 3 Check Your Progress

Write 3x + 2y = 6 in slope-intercept form.

(A)
$$y = -\frac{3}{2}x + 3$$

B.
$$y = -3x + 6$$

C.
$$y = -3x + 3$$

D.
$$y = 2x + 3$$

Example 3 Write each equation in slope-intercept form.

7.
$$y - 10 = 4(x + 6)$$
 8. $y - 7 = -\frac{3}{4}(x + 5)$ 9. $y - 9 = x + 4$ $y = x + 13$

$$7 - 10 = 4(x + 6)$$

$$7 - 10 = 4x + 24$$

$$7 - 10 = 4x + 24$$

$$7 - 4 \times + 34$$

$$7 - 7 = -3(x + 5) - 15 + 28$$

$$7 - 7 = -3 \times 4 - 15$$

$$7 - 7 = -3 \times 4 - 15$$

$$7 - 7 = -3 \times 4 - 15$$

$$7 - 7 = -3 \times 4 - 13$$

$$7 - 7 = -3 \times 4 - 13$$

$$7 - 7 = -3 \times 4 - 13$$

8.
$$y = -\frac{3}{4}x + \frac{13}{4}$$

4.
$$y + 2 - \frac{7}{8}(x - 3)$$

5.
$$y + 7 = -5(x + 3)$$

5 $x + y = -22$

6.
$$y + 2 = \frac{5}{3}(x + 6)$$

 $5x - 3y = -24$

7.
$$y - 10 = 4(x + 6)$$

8.
$$y-7=-\frac{3}{4}(x+5)$$
 9. $y-9=x+4$ $y=x+13$

9.
$$y - 9 = x + 4$$
 $y = x + 13$

$$87 + 16 = 7(x - 3)$$

$$87 + 16 = 7(x - 2)$$

$$87 + 16 = 7(x - 16)$$

$$-7(x - 16)$$

$$-7(x - 16)$$

$$-7(x - 3)$$

mple 4

- 10. GEOMETRY Use right triangle FGH.
 - **a.** Write an equation in point-slope form for the line containing \overline{GH} . $y-7=\begin{pmatrix} -\frac{6}{7} & y+3 \end{pmatrix}$
 - **b.** Write the standard form of the line containing \overline{GH} .

$$6x + 7y = 31$$

Practice and Problem Solving

Extra Practice is on page R4.

Example 1 Write an equation in point-slope form for the line that passes through each point with the given slope. Then graph the equation. 11–18. See margin.

11.
$$(5,3), m=7$$

13.
$$(-6, -3), m = -1$$

15.
$$(-2, 11), m = \frac{4}{3}$$

17.
$$(-2, -9), m = -\frac{7}{5}$$

12.
$$(2, -1), m = -3$$

14.
$$(-7, 6), m = 0$$

16.
$$(-6, -8), m = -\frac{5}{8}$$

18.
$$(-6,0)$$
, horizontal line

(18) Y=0

10. GEOMETRY Use right triangle FGH.

- **a.** Write an equation in point-slope form for the line containing \overline{GH} . $y-7=-\frac{6}{7}(x+3)$
- **b.** Write the standard form of the line containing \overline{GH} .

$$6x + 7y = 31$$

Practice and Problem Solving

Extra Practice is on page R4.

Write an equation in point-slope form for the line that passes through each point with the given slope. Then graph the equation. 11-18. See margin.

11.
$$(5,3), m=7$$

12.
$$(2, -1), m = -3$$

13.
$$(-6, -3), m = -1$$

14.
$$(-7, 6), m = 0$$

15.
$$(-2, 11), m = \frac{4}{3}$$

13.
$$(-6, -3), m = -1$$
 14. $(-7, 6), m = 0$ **15.** $(-2, 11), m = \frac{4}{3}$ **16.** $(-6, -8), m = -\frac{5}{8}$

17.
$$(-2, -9)$$
, $m = -\frac{7}{5}$

18.
$$(-6,0)$$
, horizontal line

12.

13.

14.

Additional Answers

11-18. See Ch. 4 Answer Appendix for graphs.

11.
$$y - 3 = 7(x - 5)$$

12.
$$y + 1 = -3(x - 2)$$

13.
$$y + 3 = -1(x + 6)$$

14.
$$y - 6 = 0$$

15.
$$y-11=\frac{4}{3}(x+2)$$

16.
$$y + 8 = -\frac{5}{8}(x + 6)$$

17.
$$y+9=-\frac{7}{5}(x+2)$$

18.
$$y = 0$$

Example 2 Write each equation in standard form.

19.
$$y - 10 = 2(x - 8)$$
 2 $x - y = 6$

20.
$$y-6=-3(x+2)$$
 3x+y=0

21.
$$y - 9 = -6(x + 9)$$
 6 $x + y = -45$

22.
$$y + 4 = \frac{2}{3}(x + 7)$$
 2 $x - 3y = -2$

23.
$$y + 7 = \frac{9}{10}(x + 3)$$
 9x - 10y = 43

23.
$$y + 7 = \frac{9}{10}(x + 3)$$
 9x - 10y = 43 24. $y + 7 = -\frac{3}{2}(x + 1)$ **3x + 2y = -17**

25.
$$2y + 3 = -\frac{1}{3}(x - 2)$$
 $x + 6y = -7$

26.
$$4y - 5x = 3(4x - 2y + 1)$$
 17 $x - 10y = -3$

Example 3 Write each equation in slope-intercept form.

27.
$$y-6=-2(x-7)$$
 $y=-2x+20$

28.
$$y - 11 = 3(x + 4)$$
 $y = 3x + 23$

29.
$$y + 5 = -6(x + 7)$$
 $y = -6x - 47$

30.
$$y-1=\frac{4}{5}(x+5)$$
 $y=\frac{4}{5}x+5$

31.
$$y + 2 = \frac{1}{6}(x - 4)$$
 $y = \frac{1}{6}x - \frac{8}{3}$

31.
$$y + 2 = \frac{1}{6}(x - 4)$$
 $y = \frac{1}{6}x - \frac{8}{3}$ 32. $y + 6 = -\frac{3}{4}(x + 8)$ $y = -\frac{3}{4}x - 12$

33.
$$y + 3 = -\frac{1}{3}(2x + 6)$$
 $y = -\frac{2}{3}x - 5$ **34.** $y + 4 = 3(3x + 3)$ $y = 9x + 5$

34.
$$y + 4 = 3(3x + 3)$$
 $y = 9x + 5$

(35) MOVIE RENTALS The number of copies of a movie rented at a video kiosk decreased Example 4 at a constant rate of 5 copies per week. The 6th week after the movie was released, 4 copies were rented. How many copies were rented during the second week? 24 copies

$$(28) \gamma - 11 = 3(x+4)$$

$$\gamma - 11 = 3x + 12$$

$$+ 11 \qquad + 23 \qquad + 23$$