EXAMPLE 1 Parallel Line Through a Given Point

Write the slope-intercept form of an equation for the line that passes through (4, -2) and is parallel to the graph of $y = \frac{1}{2}x - 7$.

The line parallel to $y = \frac{1}{2}x - 7$ has the same slope, $\frac{1}{2}$.

Replace m with $\frac{1}{2}$, and (x_1, y_1) with (4, -2) in the point-slope form.

EXAMPLE 1 Parallel Line Through a Given Point

$$y = \frac{1}{2}x - 4$$

Write the equation in slope-intercept form.

EXAMPLE 1 Check Your Progress

Write the slope-intercept form of an equation for the line that passes through (2, 3) and is parallel to the graph of $y = \frac{1}{2}x - 1$.

A.
$$y = -2x + 3$$

B.
$$y = \frac{1}{2}x + 3$$

C.
$$y = \frac{1}{2}x + 2$$

D. $y = -2x - 1$

D.
$$y = -2x - 1$$

EXAMPLE 1 Check Your Progress

Write the slope-intercept form of an equation for the line that passes through (2, 3) and is parallel to the graph of $y = \frac{1}{2}x - 1$.

A.
$$y = -2x + 3$$

B.
$$y = \frac{1}{2}x + 3$$

C.
$$y = \frac{1}{2}x + 2$$

D.
$$y = -2x - 1$$

Real-World Example 2

Slopes of Perpendicular Lines

A. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid ARTP, RT and AP are bases. Can EZ be used to measure the height of the trapezoid? Explain.

Real-World Example 2 Slopes of Perpendicular Lines

Find the slope of each segment.

Slope of
$$\overline{RT}$$
: $m = \frac{1 - (-3)}{-1 - (-5)}$ or 1

Slope of
$$\overline{AP}$$
: $m = \frac{0 - (-10)}{6 - (-4)}$ or 1

Slope of
$$\overline{EZ}$$
: $m = \frac{-8 - (-1)}{-2 - (-3)}$ or -7

Real-World Example 2 Slopes of Perpendicular Lines

Find the slope of each segment.

Slope of
$$\overline{RT}$$
: $m = \frac{1 - (-3)}{-1 - (-5)}$ or 1

Slope of
$$\overline{AP}$$
: $m = \frac{0 - (-10)}{6 - (-4)}$ or 1

Slope of
$$\overline{EZ}$$
: $m = \frac{-8 - (-1)}{-2 - (-3)}$ or -7

Answer: The slope of \overline{RT} and \overline{AP} is 1 and the slope of \overline{EZ} is -7. Since $1(-7) \neq -1$, \overline{EZ} is not perpendicular to \overline{RT} and \overline{AP} . So, it cannot be used to measure the height of *ARTP*.

Real-World Example 2 Slopes of Perpendicular Lines

B. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid ARTP, \overline{RT} and \overline{AP} are bases. Are the bases parallel?

Slope of
$$\overline{RT}$$
: $m = \frac{1 - (-3)}{-1 - (-5)}$ or 1

Slope of
$$\overline{AP}$$
: $m = \frac{0 - (-10)}{6 - (-4)}$ or 1

Real-World Example 2 Slopes of Perpendicular Lines

B. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid *ARTP*, *RT* and *AP* are bases. Are the bases parallel?

Slope of
$$\overline{RT}$$
: $m = \frac{1 - (-3)}{-1 - (-5)}$ or 1

Slope of
$$\overline{AP}$$
: $m = \frac{0 - (-10)}{6 - (-4)}$ or 1

Answer: Yes, both \overline{RT} and \overline{AP} have a slope of 1.

Real-World Example 2 Check Your Progress

The graph shows the diagonals of a rectangle. Determine whether JL is perpendicular to KM.

- A. \overline{JL} is not perpendicular to \overline{KM} .
- **B.** \overline{JL} is perpendicular to \overline{KM} .
- C. cannot be determined

Real-World Example 2 Check Your Progress

The graph shows the diagonals of a rectangle. Determine whether \overline{JL} is perpendicular to \overline{KM} .

- \overline{A} \overline{JL} is not perpendicular to \overline{KM} .
 - B. \overline{JL} is perpendicular to \overline{KM} .
 - C. cannot be determined

Parallel Lines: All vertical lines are parallel. If two nonvertical lines in a plane have the same slope, then they are parallel. 0 Perpendicular Lines: Vertical lines and horizontal lines are perpendicular. If the product of the slopes of two nonvertical lines is -1, then the lines are perpendicular.

EXAMPLE 3 Parallel or Perpendicular Lines

Determine whether the graphs of 3x + y = 12, $y = \frac{1}{3}x + 2$, and 2x - 6y = -5 are parallel or perpendicular. Explain.

EXAMPLE 3 Check Your Progress

Determine whether the graphs of y = -2x + 1, x - 2y = -4, and y = 3 are parallel or perpendicular.

- A. y = -2x + 1 and x 2y = -4 are perpendicular. None of the lines are parallel.
- B. y = -2x + 1 and y = 3 are perpendicular. None of the lines are parallel.

- C. y = -2x + 1 and x 2y = -4 are parallel. None of the lines are perpendicular.
- D. None of the lines are parallel or perpendicular.

EXAMPLE 3 Check Your Progress

Determine whether the graphs of y = -2x + 1, x - 2y = -4, and y = 3 are parallel or perpendicular.

- y = -2x + 1 and x 2y = -4 are perpendicular. None of the lines are parallel.
- B. y = -2x + 1 and y = 3 are perpendicular. None of the lines are parallel.

D. None of the lines are parallel or perpendicular.

Example 1 Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the graph of the given equation.

1.
$$(-1, 2), y = \frac{1}{2}x - 3$$
 $y = \frac{1}{2}x + 2\frac{1}{2}$

2.
$$(0, 4), y = -4x + 5$$
 $y = -4x + 4$

Example 2 3. GARDENS A garden is in the shape of a quadrilateral with vertices A(-2, 1), B(3, -3), C(5, 7), and D(-3, 4). Two paths represented by \overline{AC} and \overline{BD} cut across the garden. Are the paths perpendicular? Explain.

4. CSS PRECISION A square is a quadrilateral that has opposite sides parallel, consecutive sides that are perpendicular, and diagonals that are perpendicular. Determine whether the quadrilateral is a square. Explain. See margin.

Additional Answer

4. Since \overline{EH} and \overline{FG} are parallel to the *y*-axis, they are parallel. Since \overline{EF} and \overline{HG} are parallel to the *x*-axis they are parallel and \overline{EH} is perpendicular to \overline{EF} and \overline{HG} . Likewise, \overline{FG} is perpendicular to \overline{EF} and \overline{HG} . The slope of \overline{EG} is -1 and the slope of \overline{FH} is 1. Since the slopes are opposite reciprocals, $\overline{EG} \perp \overline{FH}$. The quadrilateral is a square.

Example 3 Determine whether the graphs of the following equations are *parallel* or *perpendicular*. Explain.

$$5 y = -2x, 2y = x, 4y = 2x + 4$$

6.
$$y = \frac{1}{2}x$$
, $3y = x$, $y = -\frac{1}{2}x$

6. None are parallel or perpendicular; none of the slopes are equal or opposite reciprocals.

- **Example 1** Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the graph of the given equation.
 - 1. $(-1, 2), y = \frac{1}{2}x 3$ $y = \frac{1}{2}x + 2\frac{1}{2}$ 2. (0, 4), y = -4x + 5 y = -4x + 4

$$y = \frac{1}{2} \times 1$$
 $(2) = (2) \times 1$
 $(2) = (2) \times 1$
 $(2) \times 1$

Example 3 Determine whether the graphs of the following equations are *parallel* or *perpendicular*. Explain.

slopes are opposi $\overline{EG} \perp \overline{FH}$. The qual a square.

6.
$$y = \frac{1}{2}x$$
, $3y = x$, $y = -\frac{1}{2}x$

6. None are parallel or perpendicular; none of the slopes are equal or opposite reciprocals.

per pendicular lines have negative reciprols for their slopes ... m=-2 Example 3 Determine whether the graphs of the following equations are parallel or perpendicular. Explain.

slopes are opposi $\overline{EG} \perp \overline{FH}$. The qual a square.

5
$$y = -2x$$
, $2y = x$, $4y = 2x + 4$

6.
$$y = \frac{1}{2}x$$
, $3y = x$, $y = -\frac{1}{2}x$

None are parallel or perpendicular; none of the slopes are equal or opposite reciprocals.

2. (0, 4), y = -4x + 5 y = -4x + 4

Example 1 Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the graph of the given equation.

11.
$$(3, -2)$$
, $y = x + 4$

12.
$$(4, -3), y = 3x - 5$$
 13. $(0, 2), y = -5x + 8$

13.
$$(0, 2), y = -5x + 8$$

14.
$$(-4, 2), y = -\frac{1}{2}x + 6$$
 15. $(-2, 3), y = -\frac{3}{4}x + 4$

15.
$$(-2,3)$$
, $y = -\frac{3}{4}x + 4$

16.
$$(9, 12), y = 13x - 4$$

Example 2 17. **GEOMETRY** A trapezoid is a quadrilateral that has exactly one pair of parallel opposite sides. Is ABCD a trapezoid? Explain your

18. GEOMETRY CDEF is a kite. Are the diagonals of the kite perpendicular? Explain your reasoning.

11. y = x - 512. y = 3x - 1513. y = -5x + 214. $y = -\frac{1}{2}x$

15.
$$y = -\frac{3}{4}x + 1\frac{1}{2}$$

16. $y = 13x - 105$

- 18. The slope of \overline{CE} is $\frac{2}{3}$ and the slope of \overline{DF} is $-\frac{3}{2}$. The diagonals are perpendicular
 - because the slopes are opposite reciprocals.
- **19.** Determine whether the graphs of y = -6x + 4 and $y = \frac{1}{6}x$ are perpendicular. Explain. Yes; the slopes are -6 and $\frac{1}{6}$.
- **20.** MAPS On a map, Elmwood Drive passes through R(4, -11) and S(0, -9), and Taylor Road passes through J(6, -2) and K(4, -5). If they are straight lines, are the two streets perpendicular? Explain. No; the slopes are $-\frac{1}{2}$ and $\frac{3}{2}$.

Additional Answers

has the assable of the following equations ass

17. Yes: the line containing AD and the line containing \overline{BC} have the same slope, $\frac{1}{3}$. Therefore, one pair of sides is parallel. The slope of \overline{AB} is undefined and the slope of \overline{CD}

PERSEVERANCE Determine whether the graphs of the following equations are parallel or perpendicular. Explain.

21.
$$2x - 8y = -24$$
 and $4x + y = -2$ are perpendicular; $2x - 8y = -24$ and $x - 4y = 4$ are parallel.

21.
$$2x - 8y = -24$$
, $4x + y = -2$, $x - 4y = 4$

22.
$$3x - 9y = 9$$
, $3y = x + 12$, $2x - 6y = 12$

Example 4

Write an equation in slope-intercept form for the line that passes through the given point and is perpendicular to the graph of the equation. 23-28. See margin.

23
$$(-3, -2), y = -2x + 4$$
 24. $(-5, 2), y = \frac{1}{2}x - 3$ **25.** $(-4, 5), y = \frac{1}{3}x + 6$

24.
$$(-5, 2), y = \frac{1}{2}x - 3$$

25.
$$(-4, 5), y = \frac{1}{3}x + 6$$

26. (2, 6),
$$y = -\frac{1}{4}x + 3$$
 27. (3, 8), $y = 5x - 3$ **28.** (4, -2), $y = 3x + 5$

27.
$$(3, 8), y = 5x - 3$$

28.
$$(4, -2), y = 3x + 5$$

23.
$$y = \frac{1}{2}x - \frac{1}{2}$$

24.
$$y = -2x - 8$$

25.
$$y = -3x - 7$$

26.
$$y = 4x - 2$$

27.
$$y = -\frac{1}{5}x + 8\frac{3}{5}$$

28.
$$y = -\frac{1}{3}x - \frac{2}{3}$$

29.
$$y = 2x + 16$$

30.
$$y = -\frac{3}{2}x + \frac{27}{2}$$

31.
$$y = -\frac{1}{5}x - \frac{3}{25}$$

Tools Help

Standards

- 100%

Search...

Glossary Index

16. y = 13x - 10518. The slope of \overline{CE} is $\frac{2}{3}$ and the slope of \overline{DF} is $-\frac{3}{2}$. The diagonals are perpendicular because the slopes are

> opposite reciprocals.

- **19.** Determine whether the graphs of y = -6x + 4 and $y = \frac{1}{6}x$ are perpendicular. Explain. Yes; the slopes are -6 and $\frac{1}{6}$.
- **20.** MAPS On a map, Elmwood Drive passes through R(4, -11) and S(0, -9), and Taylor Road passes through J(6, -2) and K(4, -5). If they are straight lines, are the two streets perpendicular? Explain. No; the slopes are $-\frac{1}{2}$ and $\frac{3}{2}$.
- PERSEVERANCE Determine whether the graphs of the following equations are Example 3 parallel or perpendicular. Explain. 21. 2x - 8y = -24 and 4x + y = -2

21.
$$2x - 8y = -24$$
, $4x + y = -2$, $x - 4y = 4$

22.
$$3x - 9y = 9$$
, $3y = x + 12$, $2x - 6y = 12$

11.
$$2x - 8y = -24$$
 and $4x + y = -2$
are perpendicular; $2x - 8y =$
 -24 and $x - 4y = 4$ are parallel.

- 22. All of the lines are parallel.
- Example 4 Write an equation in slope-intercept form for the line that passes through the given point and is perpendicular to the graph of the equation. 23-28. See margin.

23
$$(-3, -2), y = -2x + 4$$
 24. $(-5, 2), y = \frac{1}{2}x - 3$

24.
$$(-5, 2), y = \frac{1}{2}x - 3$$

25.
$$(-4, 5), y = \frac{1}{3}x + 6$$

26. (2, 6),
$$y = -\frac{1}{4}x + 2$$

38. (4, -2), y = 3x + 5

Licular to the graph of

