4-5 Completing the Square

Example 1 Equation with Rational Roots

Solve $x^2 + 6x + 9 = 36$ by using the Square Root Property.

$$x^2 + 6x + 9 = 36$$

Original equation

$$(x+3)^2 = 36$$

Factor the perfect square trinomial.

$$x + 3 = \pm \sqrt{36}$$

Square Root Property

$$x + 3 = \pm 6$$
 $\sqrt{36} = 6$

$$\sqrt{36} = 6$$

$$y = -3 + 6$$

 $x = -3 \pm 6$ Subtract 3 from each side.

$$x = -3 + 6$$
 or $x = -3 - 6$ Write as two equations.

$$= 3$$

$$= -9$$

=-9 Simplify.

The solution set is $\{-9, 3\}$ or $\{x|x=-9, 3\}$.

Example 2 Equation with Irrational Roots

Solve $x^2 - 10x + 25 = 27$ by using the Square Root Property.

$$x^2 - 10x + 25 = 27$$

Original equation

$$(x-5)^2 = 27$$

Factor the perfect square trinomial.

$$x - 5 = \pm \sqrt{27}$$

Square Root Property

$$x = 5 \pm 3\sqrt{3}$$

Add 5 to each side: $\sqrt{27} = 3\sqrt{3}$.

$$x = 5 + 3\sqrt{3}$$
 or $x = 5 - 3\sqrt{3}$

Write as two equations.

$$\approx 10.2$$

$$\approx -0.2$$

Use a calculator.

The exact solutions of this equation are $5 + 3\sqrt{3}$ and $5 - 3\sqrt{3}$. The approximate solutions are -0.2 and 10.2. Check these results by finding and graphing the related quadratic function.

Examples 1-2 Solve each equation by using the Square Root Property. Round to the nearest hundredth if necessary.

1.
$$x^2 + 12x + 36 = 6$$
 {**-8.45**, **-3.55**} **2.** $x^2 - 8x + 16 = 13$ {**0.39**, **7.61**}

2.
$$x^2 - 8x + 16 = 13 \{0.39, 7.61\}$$

3.
$$x^2 + 18x + 81 = 15$$
 {**-12.87**, **-5.13**}

4.
$$9x^2 + 30x + 25 = 11$$
 {**-2.77**, **-0.56**}

5. LASER LIGHT SHOW The area *A* in square feet of a projected laser light show is given by $A = 0.16d^2$, where d is the distance from the laser to the screen in feet. At what distance will the projected laser light show have an area of 100 square feet? 25 ft

Complete the Square All quadratic equations can be solved using the Square Root Property by manipulating the equation until one side is a perfect square. This method is called **completing the square**. $246 \times 49 = (\times 43)(\times 43)$

Complete the Square All quadratic equations can be solved using the Square Root Property by manipulating the equation until one side is a perfect square. This method is called completing the square.

Consider $x^2 + 16x = 9$. Remember to perform each operation on each side of the equation.

$$x^2 + 16x + \blacksquare = 9$$
 What value is needed for the perfect square?
 $x^2 + 16x + 64 = 9 + 64$ $\left(\frac{16}{2}\right)^2 = 64$; add 64 to each side.
 $x^2 + 16x + 64 = 73$ Simplify.
 $(x + 8)^2 = 73$ We can now use the Square Root Property.

Example 3 Complete the Square

Find the value of c that makes $x^2 + 16x + c$ a perfect square. Then write the trinomial as a perfect square.

$$\frac{16}{2} = 8$$

$$8^2 = 64$$

Step 2 Square the result in Step 1.
$$8^2 = 64$$

Step 3 Add the result of Step 2 to $x^2 + 16x$. $x^2 + 16x + 64$

$$x^2 + 16x + 64$$

The trinomial $x^2 + 16x + 64$ can be written as $(x + 8)^2$.

Find the value of c that makes each trinomial a perfect square. Then write the trinomial as a perfect square.

6.
$$x^2 - 10x + c$$
 25; $(x - 5)^2$

7.
$$x^2 - 5x + c$$
 6.25; $(x - 2.5)^2$

Example 4 Solve an Equation by Completing the Square

Solve $x^2 + 10x - 11 = 0$ by completing the square.

$$x^2 + 10x - 11 = 0$$
 Notice that $x^2 + 10x - 11$ is not a perfect square.
 $x^2 + 10x = 11$ Rewrite so the left side is of the form $x^2 + bx$.
 $x^2 + 10x + 25 = 11 + 25$ Since $\left(\frac{10}{2}\right)^2 = 25$, add 25 to each side.
 $(x + 5)^2 = 36$ Write the left side as a perfect square.
 $x + 5 = \pm 6$ Square Root Property
 $x = -5 \pm 6$ Subtract 5 from each side.
 $x = -5 + 6$ or $x = -5 - 6$ Write as two equations.
 $x = -11$ Simplify.

8.
$$x^2 + 2x - 8 = 0$$
 {**-4, 2**}

Example 5 Equation with $a \neq 1$

Solve $2x^2 - 7x + 5 = 0$ by completing the square.

$$2x^2 - 7x + 5 = 0$$

Notice that $2x^2 - 7x + 5$ is not a perfect square.

$$x^2 - \frac{7}{2}x + \frac{5}{2} = 0$$

Divide by the coefficient of the quadratic term, 2.

$$x^2 - \frac{7}{2}x = -\frac{5}{2}$$

 $x^2 - \frac{7}{2}x = -\frac{5}{2}$ Subtract $\frac{5}{2}$ from each side.

$$x^2 - \frac{7}{2}x + \frac{49}{16} = -\frac{5}{2} + \frac{49}{16}$$

Since $\left(-\frac{7}{2} \div 2\right)^2 = \frac{49}{16}$, add $\frac{49}{16}$ to each side.

$$\left(x - \frac{7}{4}\right)^2 = \frac{9}{16}$$

Write the left side as a perfect square by factoring. Simplify the right side.

$$x - \frac{7}{4} = \pm \frac{3}{4}$$

Square Root Property

$$x = \frac{7}{4} \pm \frac{3}{4}$$

 $x = \frac{7}{4} \pm \frac{3}{4}$ Add $\frac{7}{4}$ to each side.

$$x = \frac{7}{4} + \frac{3}{4}$$
 or $x = \frac{7}{4} - \frac{3}{4}$

Write as two equations.

$$=\frac{5}{2}$$
 =

10. $2x^2 - 3x - 3 = 0$ {**-0.69, 2.19**}

11. $2x^2 + 6x - 12 = 0$ $\{-4.37, 1.37\}$

Example 6 Equation with Imaginary Solutions

Solve $x^2 + 8x + 22 = 0$ by completing the square.

$$x^2 + 8x + 22 = 0$$
$$x^2 + 8x = -22$$

$$x^2 + 8x + 16 = -22 + 16$$

$$(x+4)^2 = -6$$

$$x + 4 = \pm \sqrt{-6}$$
 Square Root Property

$$x + 4 = \pm i\sqrt{6} \qquad \qquad \sqrt{-1} = i$$

$$x = -4 \pm i\sqrt{6}$$

Notice that $x^2 + 8x + 22$ is not a perfect square.

 $x^2 + 8x = -22$ Rewrite so the left side is of the form $x^2 + bx$.

$$x^2 + 8x + 16 = -22 + 16$$
 Since $\left(\frac{8}{2}\right)^2 = 16$, add 16 to each side.

Write the left side as a perfect square.

$$\sqrt{-1} = i$$

$$x = -4 \pm i\sqrt{6}$$
 Subtract 4 from each side.

9.
$$\{2-i\sqrt{5}, 2+i\sqrt{5}\}$$

9.
$$x^2 - 4x + 9 = 0$$

12.
$$x^2 + 4x + 6 = 0$$

$$\{-2-i\sqrt{2}, -2+i\sqrt{2}\}$$

Examples 1-2 Solve each equation by using the Square Root Property. Round to the nearest hundredth

14.
$$x^2 + 4x + 4 = 10$$

15.
$$x^2 - 6x + 9 = 20$$

14.
$$x^2 + 4x + 4 = 10$$
 15. $x^2 - 6x + 9 = 20$ **16.** $x^2 + 8x + 16 = 18$ **18.** $\{-8.24, -3.76\}$

17.
$$x^2 + 10x + 25 = 7$$

18.
$$x^2 + 12x + 36 = 5$$

17.
$$x^2 + 10x + 25 = 7$$
 18. $x^2 + 12x + 36 = 5$ **19.** $x^2 - 2x + 1 = 4$ {-1, 3}

20.
$$x^2 - 5x + 6.25 = 4$$

21.
$$x^2 - 15x + 56.25 = 8$$

20.
$$x^2 - 5x + 6.25 = 4$$
 21. $x^2 - 15x + 56.25 = 8$ **22.** $x^2 + 32x + 256 = 1$ {-17, -15}

23.
$$x^2 - 3x + \frac{9}{4} = 6$$

24.
$$x^2 + 7x + \frac{49}{4} = 4$$

23.
$$x^2 - 3x + \frac{9}{4} = 6$$
 24. $x^2 + 7x + \frac{49}{4} = 4$ **25.** $x^2 - 9x + \frac{81}{4} = \frac{1}{4}$ **44.** 5} **20.** {0.5, 4.5} **21.** {4.67, 10.33}

Example 3 Find the value of c that makes each trinomial a perfect square. Then write the trinomial as a perfect square.

26.
$$x^2 + 8x + c$$
 16; $(x + 4)^2$ **27.** $x^2 + 16x + c$ **64;** $(x + 8)^2$ **28.** $x^2 - 11x + c$ $\frac{121}{4}$; $(x - \frac{11}{2})^2$ **29.** $x^2 + 9x + c$ **20.25;** $(x + 4.5)^2$

27.
$$x^2 + 16x + c$$
 64; $(x + 8)^2$
29. $x^2 + 9x + c$ **20.25:** $(x + 4.5)^2$

Examples 4–6 Solve each equation by completing the square. 30. $\{2-2i\sqrt{2}, 2+2i\sqrt{2}\}$ 31. $\{-4.61, 2.61\}$

30.
$$x^2 - 4x + 12 = 0$$

31.
$$x^2 + 2x - 12 = 0$$

30.
$$x^2 - 4x + 12 = 0$$
 31. $x^2 + 2x - 12 = 0$ **32.** $x^2 + 6x + 8 = 0$ {-4, -2}

33.
$$r^2 - 4r + 3 = 0$$
 {1.

34.
$$2x^2 + x - 3 = 0$$

36.
$$2x^2 + 5x + 7 = 0$$
37. $3x^2 - 6x - 9 = 0$
38. $x^2 - 2x + 3 = 0$
39. $x^2 + 4x + 11 = 0$
31. $x^2 + 2x - 12 = 0$
32. $x^2 + 6x + 8 = 0$
33. $x^2 - 3x + 5 = 0$
34. $\left\{-\frac{3}{2}, 1\right\}$
36. $2x^2 + 5x + 7 = 0$
37. $3x^2 - 6x - 9 = 0$
38. $x^2 - 2x + 3 = 0$
41. $x^2 - 10x + 29 = 0$
Chapter 4

36.
$$2x^2 + 5x + 7 = 0$$

$$(37)3x^2 - 6x - 9 = 0$$

38.
$$x^2 - 2x + 3 = 0$$

39.
$$x^2 + 4x + 11 = 0$$

40.
$$x^2 - 6x + 18 = 0$$

41.
$$x^2 - 10x + 29 = 0$$

42.
$$3x^2 - 4x = 2$$

43.
$$2x^2 - 7x = -12$$

44.
$$x^2 - 2.4x - 2.2$$
 Chapter 4

45.
$$x^2 - 5.3x = -8.6$$

46.
$$x^2 - \frac{1}{5}x - \frac{11}{5} = 0$$

43.
$$2x^2 - 7x = -12$$
 44. $x^2 - 2.4x = 2.2$ **46.** $x^2 - \frac{1}{5}x - \frac{11}{5} = 0$ **47.** $x^2 - \frac{9}{2}x - \frac{24}{5} = 0$ {-0.89, 5.39}

Answer Appendix.

Lesson 4-5

35.
$$\left\{ \frac{3 - i\sqrt{31}}{4}, \frac{3 + i\sqrt{31}}{4} \right\}$$
 42. $\{-0.39, 1.72\}$

$$\frac{\sqrt{31}}{\sqrt{31}}$$

35.
$$\left\{\frac{5-i\sqrt{31}}{4}, \frac{5+i\sqrt{31}}{4}\right\}$$
36. $\left\{\frac{-5-i\sqrt{31}}{4}, \frac{-5+i\sqrt{31}}{4}\right\}$
43. $\left\{\frac{7-i\sqrt{47}}{4}, \frac{7+i\sqrt{47}}{4}\right\}$
44. $\left\{-0.71, 3.11\right\}$

38.
$$\left\{1 - i\sqrt{2}, 1 + i\sqrt{2}\right\}$$

45.
$$\left\{2.65 - i\sqrt{1.5775}, 2.65 + i\sqrt{1.5775}\right\}$$

39.
$$\left\{-2 - i\sqrt{7}, -2 + i\sqrt{7}\right\}$$

40.
$$\{3-3i, 3+3i\}$$

41.
$$\{5-2i, 5+2i\}$$

