# 4.3 Connecting f' and f" with the Graph of f

## What you'll learn about

- First Derivative Test for Local Extrema
- Concavity
- Points of Inflection

 Second Derivative Test for Local Extrema

 Learning about Functions from Derivatives

Absolute min

a

We will use what we know about derivatives to identify extremas;



#### THEOREM 4 First Derivative Test for Local Extrema

The following test applies to a continuous function f(x).

#### At a critical point c:

1. If f' changes sign from positive to negative at c (f' > 0 for x < c and f' < 0 for x > c), then f has a local maximum value at c.



# notice how the sign of f changes around extremas!

2. If f' changes sign from negative to positive at c (f' < 0 for x < c and f' > 0 for x > c), then f has a local minimum value at c.



3. If f' does not change sign at c (f' has the same sign on both sides of c), then f has no local extreme value at c.



Also, note how extremas don't occur whenever the sign of f' does NOT change...

## At a left endpoint a:

If f' < 0 (f' > 0) for x > a, then f has a local maximum (minimum) value at a.



## At a right endpoint *b*:

If f' < 0 (f' > 0) for x < b, then f has a local minimum (maximum) value at b.



## **EXAMPLE 1** Using the First Derivative Test

For each of the following functions, use the First Derivative Test to find the local extreme values. Identify any absolute extrema.

(a) 
$$f(x) = x^3 - 12x - 5$$



(a) Since f is differentiable for all real numbers, the only possible critical points are the 3(4) -12 zeros of f'. Solving  $f'(x) = 3x^2 - 12 = 0$ , we find the zeros to be x = 2 and x = -2. The zeros partition the x-axis into three intervals, as shown below:





In Exercises 1–6, use the First Derivative Test to determine the local extreme values of the function, and identify any absolute extrema. Support your answers graphically.

1. 
$$y = x^2 - x - 1$$

$$2. y = -2x^3 + 6x^2 - 3$$



| In Exercises 1-6, use the First Derivative Test to determine the local                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| extreme values of the function, and identify any absolute extrema.                                                                                                                                                                                                                              |
| Support your answers graphically.                                                                                                                                                                                                                                                               |
| 1. $y = x^2 - x - 1$ 2. $y = -2x^3 + 6x^2 - 3$                                                                                                                                                                                                                                                  |
| 3. $y = 2x^4 - 4x^2 + 1$ 4. $y = xe^{1/x}$ Local minimum: $(1, e)$                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                 |
| Local maxima: $(-\sqrt{8}, 0)$ and $(2, 4)$ ; Local minimum: $(0, 1)$<br>$5, y = x\sqrt{8} - x^2$ (6. $y = x^2 + 1$ , $x \le 0$<br>local minima: $(-2, -4)$ and $(\sqrt{8}, 0)$ ;                                                                                                               |
| 5. $y = x\sqrt{8 - x^2}$<br>local minima: $(-2, -4)$ and $(\sqrt{8}, 0)$ ; 6. $y = \begin{cases} 3 - x^2, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                 |
| 4 is all absolute maximum and 4 is an absolute minimum.                                                                                                                                                                                                                                         |
| 4 is an absolute maximum and $-4$ is an absolute minimum.  (2) $\gamma' = -6 x^2 + 12x = 0 \times = 0$ , 2                                                                                                                                                                                      |
| -6x(x-2) = 0                                                                                                                                                                                                                                                                                    |
| $-6\times(\times-2)=0$                                                                                                                                                                                                                                                                          |
| Test Test                                                                                                                                                                                                                                                                                       |
| TEN KEI KEI                                                                                                                                                                                                                                                                                     |
| £,                                                                                                                                                                                                                                                                                              |
| (-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(                                                                                                                                                                                                                                                        |
| (1)1-10 +                                                                                                                                                                                                                                                                                       |
| • V                                                                                                                                                                                                                                                                                             |
| 1 7                                                                                                                                                                                                                                                                                             |
| 8-x <sup>2</sup> 70                                                                                                                                                                                                                                                                             |
| x x - 2                                                                                                                                                                                                                                                                                         |
| (B) 7 = X 1 X 1                                                                                                                                                                                                                                                                                 |
| (0) 1                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                 |
| 10-v2)2 / 3                                                                                                                                                                                                                                                                                     |
| e=x 9=1 (8-x2) 2(-22) x7-13                                                                                                                                                                                                                                                                     |
| 6 = 1 1/8-x2) (-23/8 X)                                                                                                                                                                                                                                                                         |
| (1=1 9=2.0)                                                                                                                                                                                                                                                                                     |
| 2/2 (-18,18)                                                                                                                                                                                                                                                                                    |
| e=x 9=1 (8-x2) (-20) x7-18<br>=x(8-x2) 2 (-5, 18)                                                                                                                                                                                                                                               |
| 1 20 2 2                                                                                                                                                                                                                                                                                        |
| $= \times (8 - x^{2})^{\frac{1}{2}} - \times (8 - x^{2})^{\frac{1}{2}}$ $= \times (8 - x^{2})^{\frac{1}{2}} - \times (8 - x^{2})^{\frac{1}{2}}$ $= \times (8 - x^{2})^{\frac{1}{2}} - \times (8 - x^{2})^{\frac{1}{2}}$ $= \times (8 - x^{2})^{\frac{1}{2}} - \times (8 - x^{2})^{\frac{1}{2}}$ |
| J'=(1)(0-x) 2 8-x ×                                                                                                                                                                                                                                                                             |
| X Vais                                                                                                                                                                                                                                                                                          |
| 2/2-x2 - 18-x                                                                                                                                                                                                                                                                                   |
| = 10 - 18-x                                                                                                                                                                                                                                                                                     |
| 1 70 2 6                                                                                                                                                                                                                                                                                        |
| 1 - (8-13) = (0)                                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                                                                                                                               |
| Cast Office of                                                                                                                                                                                                                                                                                  |
| 187 0 1 = 0                                                                                                                                                                                                                                                                                     |
| 1 2-2×                                                                                                                                                                                                                                                                                          |
| a -2 + +2-18                                                                                                                                                                                                                                                                                    |
| -8 + +0                                                                                                                                                                                                                                                                                         |
| 7-8                                                                                                                                                                                                                                                                                             |
| 22                                                                                                                                                                                                                                                                                              |
| -2x                                                                                                                                                                                                                                                                                             |
| a 19                                                                                                                                                                                                                                                                                            |
| 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                 |
| XX                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |

In Exercises 1-6, use the First Derivative Test to determine the local extreme values of the function, and identify any absolute extrema. Support your answers graphically.

1. 
$$y = x^2 - x - 1$$

$$2. y = -2x^3 + 6x^2 - 3$$

3. 
$$y = 2x^4 - 4x^2 + 1$$

4. 
$$y = xe^{1/x}$$
 Local minimum:  $(1, e)$ 

Local maxima:  $(-\sqrt{8}, 0)$  and (2, 4);

Local minimum: (0, 1)

5. 
$$y = x\sqrt{8 - x^2}$$

**6.** 
$$y = \begin{cases} 3 - x^2, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$$

5.  $y = x\sqrt{8 - x^2}$  local minima: (-2, -4) and  $(\sqrt{8}, 0)$ ;

4 is an absolute maximum and -4 is an absolute minimum.



#### **DEFINITION Concavity**

The graph of a differentiable function y = f(x) is

- (a) concave up on an open interval I if y' is increasing on I.
- (b) concave down on an open interval I if y' is decreasing on I.

As you can see in Figure 4.21, the function  $y = x^3$  rises as x increases, but the portions defined on the intervals  $(-\infty, 0)$  and  $(0, \infty)$  turn in different ways.



Derive y twice...

## **Concavity Test**

The graph of a twice-differentiable function y = f(x) is

- (a) concave up on any interval where y'' > 0.
- (b) concave down on any interval where y'' < 0.

#### **EXAMPLE 2** Determining Concavity

Use the Concavity Test to determine the concavity of the given functions on the given intervals:

(a) 
$$y = x^2$$
 on (3, 10)

**(b)** 
$$y = 3 + \sin x$$
 on  $(0, 2\pi)$ 

#### SOLUTION

- (a) Since y'' = 2 is always positive, the graph of  $y = x^2$  is concave up on *any* interval. In particular, it is concave up on (3, 10) (Figure 4.22).
- (b) The graph of  $y = 3 + \sin x$  is concave down on  $(0, \pi)$ , where  $y'' = -\sin x$  is negative. It is concave up on  $(\pi, 2\pi)$ , where  $y'' = -\sin x$  is positive (Figure 4.23).

Now try Exercise 7.



$$y_1 = 3 + \sin x, y_2 = -\sin x$$



 $[0, 2\pi]$  by [-2, 5]

In Exercises 7–12, use the Concavity Test to determine the intervals on which the graph of the function is (a) concave up and (b) concave down.

7. 
$$y = 4x^3 + 21x^2 + 36x - 20$$
 8.  $y = -x^4 + 4x^3 - 4x + 1$ 

$$y = 4x^3 + 21x^2 + 36x - 20$$
 8.  $y = -x^4 + 4x^3 - 4x + 1$   
(a)  $(-7/4, \infty)$  (b)  $(-\infty, -7/4)$  (a)  $(0, 2)$  (b)  $(-\infty, 0)$  and  $(2, \infty)$ 

9. 
$$y = 2x^{1/5} + 3$$
  
(a)  $(-\infty, 0)$  (b)  $(0, \infty)$ 

10. 
$$y = 5 - x^{1/3}$$
  
(a)  $(0, \infty)$  (b)  $(-\infty, 0)$ 

11. 
$$y = \begin{cases} 2x, & x < 1 \\ 2 - x^2, & x \ge 1 \end{cases}$$

12. 
$$y = e^x$$
,  $0 \le x \le 2\pi$ 

(a) None (b)  $(1, \infty)$   $y = e^x$ ,  $0 \le x \le 2\pi$   $y' = -4x^2 + (2x^2 - 4)$  (b) None  $y' = -12x^2 + 24x = 0$   $y' = -12x^2 + 24x = 0$   $y' = -12x^2 + 24x = 0$ 

(-)(-)(-)(+

TI-84 Plus TEXAS INSTRUMENTS

05 x521

$$y_1 = 3 + \sin x, y_2 = -\sin x$$



 $[0, 2\pi]$  by [-2, 5]

#### Points of Inflection

The curve  $y = 3 + \sin x$  in Example 2 changes concavity at the point  $(\pi, 3)$ . We call  $(\pi, 3)$  a point of inflection of the curve.

#### **DEFINITION** Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

A point on a curve where y'' is positive on one side and negative on the other is a point of inflection. At such a point, y'' is either zero (because derivatives have the intermediate value property) or undefined.

To find points of inflection, let f" = zero!

7. 
$$y = 4x^3 + 21x^2 + 36x - 20$$
  
(a)  $(-7/4, \infty)$  (b)  $(-\infty, -7/4)$ 

#### **EXAMPLE 3** Finding Points of Inflection

Find all points of inflection of the graph of  $y = e^{-x^2}$ .

#### SOLUTION

First we find the second derivative, recalling the Chain and Product Rules:

$$y = e^{-x^{2}}$$

$$y' = e^{-x^{2}} \cdot (-2x)$$

$$y'' = e^{-x^{2}} \cdot (-2x) \cdot (-2x) + e^{-x^{2}} \cdot (-2)$$

$$= e^{-x^{2}} (4x^{2} - 2)$$

The factor  $e^{-x^2}$  is always positive, while the factor  $(4x^2 - 2)$  changes sign at  $-\sqrt{1/2}$  and at  $\sqrt{1/2}$ . Since y'' must also change sign at these two numbers, the points of inflection are  $(-\sqrt{1/2}, 1/\sqrt{e})$  and  $(\sqrt{1/2}, 1/\sqrt{e})$ . We confirm our solution graphically by observing the changes of curvature in Figure 4.24.

Now try Exercise 13.

In Exercises 13-20, find all points of inflection of the function.

13. 
$$y = xe^x$$

14. 
$$y = x\sqrt{9 - x^2}$$

15. 
$$y = \tan^{-1} x$$

**16.** 
$$y = x^3(4 - x)$$

17. 
$$y = x^{1/3}(x-4)$$

**18.** 
$$y = x^{1/2}(x + 3)$$

19. 
$$y = \frac{x^3 - 2x^2 + x - 1}{x - 2}$$

$$20. \ y = \frac{x}{x^2 + 1}$$

(15)  $y' = tan \times -1$  $y' = \frac{1}{1+x^2} = (1+x^2)^{-2} \cdot 2 \times 1 + x^2 = \frac{-2x^2}{1+x^2} = \frac{-2x^2}{1+x$ 

1 + x=0 - x= x=0 - x=0



In Exercises 21 and 22, use the graph of the function f to estimate where (a) f' and (b) f'' are 0, positive, and negative.

21.



- (a) Zero:  $x = \pm 1$ ; positive;  $(-\infty, -1)$  and  $(1, \infty)$ ; negative: (-1, 1)
- (b) Zero: x = 0; positive:  $(0, \infty)$ ; negative:  $(-\infty, 0)$

22.



- (a) Zero:  $x \approx 0, \pm 1.25$ ; positive: (-1.25, 0) and  $(1.25, \infty)$ ; negative:  $(-\infty, -1.25)$  and (0, 1.25)
- (b) Zero:  $x \approx \pm 0.7$ ; positive:  $(-\infty, -0.7)$  and  $(0.7, \infty)$ ; negative: (-0.7, 0.7)

In Exercises 23 and 24, use the graph of the function f' to estimate the intervals on which the function f is (a) increasing or (b) decreasing. Also, (c) estimate the x-coordinates of all local extreme values.

23.



- (a)  $(-\infty, -2]$  and [0, 2]
- y = f'(x) (b) [-2, 0] and [2,  $\infty$ ) (c) Local maxima: x = -2 and x = 2; local minimum: x = 0

24.



- (a) [-2, 2] (b)  $(-\infty, -2]$  and  $[2, \infty)$
- (c) Local maximum: x = 2; local minimum: x = -2