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THEOREM 4 First Derivative Test for Local Extrema

The following test applies to a continuous function f(x).

At a critical point ¢:

1. If f' changes sign from positive to negative at ¢ (f' > 0 forx < ¢ and f' < 0 for
x > c), then f has a local maximum value at c.
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notice how the sign of f changes around extremas!

2. If f'changes sign from negative to positive at ¢ (f' < 0 forx < c and f' > 0 for
x > ¢), then f has a local minimum value at c.
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3. If £’ does not change sign at ¢ (f" has the same sign on both sides of ¢), then f
has no local extreme value at c.
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Also, note how extremas don't occur whenever
the sign of f' does NOT change...



At a left endpoint a:
If f"<0(f">0) for x > a, then f has a local maximum (minimum) value at a.

local max
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At a right endpoint b:
If f/<0(f">0) for x < b, then f has a local minimum (maximum) value at b.
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EXAMPLE 1 Using the First Derivative Test

For each of the following functions, use the First Derivative Test to find the local ex-
treme values. Identify any absolute extrema.

@) fx)=x*—12x—5

=331
2,2 -\2 =0

+IL 1T

BT 7—\1/ =0
7 3,20
SOLUTION /7

(a) Since fis differentiable for all real numbers, the only possible critical points are the

zeros of f'. Solving f'(x) = 3x*> — 12 = 0, we find the zeros tobe x = 2 and x = —2. The
zeros partition the x-axis into three intervals, as shown below:
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In Exercises 1-6, use the First Derivative Test to determine the local
extreme values of the function, and identify any absolute extrema.
Support your answers graphically.

LLy=x2—x-—1 2.y=-2x+6x2-3




In Exercises 1-6, use the First Derivative Test to determine the local
extreme values of the function, and identify any absolute extrema.
Suppaort your answers graphically.

Ly=xl-x-1 2oy= -2+ 67 =3
hy='—ax?+1 4. y = xe"”* Local minimum: (1. €)
Local maxima: {5, 0) and (2, 4); Local minimum; (0, 1}
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In Exercises 1-6, use the First Derivative Test to determine the local
extreme values of the function, and identify any absolute extrema.
Support your answers graphically.

L.y=x2-x-1 2.y=-2x+6x2-3
Ly=2x*—4ax2+1 4. y = xe'’* Local minimum: (1, ¢)
Local maxima: (—V'8, 0) and (2, 4); Local minimum: (0, 1)

3—x2 x<0

— — x2 =
S5.y=xV8—x 6. v [x2+1, e

local minima: (—2, —4) and (\f"'g. 0);

4 is an absolute maximum and —4 is an absolute minimum. -1




DEFINITION Concavity
The graph of a differentiable function y = f(x) is
(a) concave up on an open interval / if y' is increasing on /.

(b) concave down on an open interval [ if y” is decreasing on I.

As you can see in Figure 4.21, the function y = x7 rises as x increases, but the portions de-

fined on the intervals (—o, 0) and (0, %) turn in different ways.
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Concavity Test
The graph of a twice-differentiable function y = f(x) is
(a) concave up on any interval where y” > 0.

(b) concave down on any interval where y” < 0.




EXAMPLE 2 Determining Concavity

Use the Concavity Test to determine the concavity of the given functions on the given
intervals:

(a) y =x2on (3, 10) (b)y =3 + sinxon (0, 27)
SOLUTION
(a) Since y” = 2 is always positive, the graph of y = x? is concave up on any interval.
In particular, it is concave up on (3, 10) (Figure 4.22).
(b) The graph of y =3 + sin x is concave down on (0, 7), where y" = —sin x is
negative. It is concave up on (77 , 277), where y' = —sin x is positive (Figure 4.23).
Now try Exercise 7.

f y,=3 +sinx,y, = —sinx

[0, 277] by [-2. 5]



In Exercises 7-12, use the Concavity Test to determine the intervals
on which the graph of the function is (a) concave up and (b) concave

down.
T.y=4x+21x24+36x—20 8. y=—x*+4x° —dx+1
(a)(—7/4, )  (b)(—m=, —T7M4) (a) (0,2) (b)(—=,0)and (2, =)
9. y=2x$5+3 10. y=5—x!/3

(a) (—o=,0) (b)(0, =) (a) (0, ) (b)(—o=,0)
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=3 +sinx,y, = —sinx

Points of Inflection

The curve y = 3 + sin x in Example 2 changes concavity at the point (7, 3). We call
(7, 3) a point of inflection of the curve.

r DEFINITION Point of Inflection

\/ A point where the graph of a function has a tangent line and where the concavity

= changes is a point of inflection.

[0, 2] by [-2. 5]

A point on a curve where y” is positive on one side and negative on the other is a point
of inflection. At such a point, y” is either zero (because derivatives have the intermediate
value property) or undefined.

To find points of inflection, let f' =) Z€I \.
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EXAMPLE 3 Finding Points of Inflection
Find all points of inflection of the graph of y = e*.
SOLUTION
First we find the second derivative, recalling the Chain and Product Rules:

x2

yr

L S
V=P (-2 (20 +e*e(-2) = O

=e* -2 — O
The factor e is always positive, while the factor (4x> — 2) changes sign at ~V1/2 and
at V'1/2. Since " must also change sign at these two numbers, the points of inflection
are (—V1/2, 1/Ve) and (V'1/2, 1/Ve). We confirm our solution graphically by observ-
ing the changes of curvature in Figure 4.24.
Now try Exercise 13.



In Exercises 13-20, find all points of inflection of the function.

13. y =xe* 14. y=xV9 — x?
15.y=tan"'x 16. y=x%4 —x)
17. y = x13(x — 4) 18. y =x"2(x + 3)
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In Exercises 21 and 22, use the graph of the function f to estimate
where (a) f" and (b) f” are 0, positive, and negative.

21. y
+ y=fx)
A &
- 0 2
y < 3 y
‘_ y =f(x)
L o -
2 2

(a) Zero:x = *1;
positive: (—oc, —1) and (1, =);
negative: (—1, 1)
(b) Zero: x = 0:
positive: (0, o);
negative: (—o, 0)

(a) Zero: x = 0, =£1.25;
positive: (—1.25, 0) and (1.25, =);
negative: (—oo, —1.25) and (0, 1.25)
(b) Zero: x = £0.7;
positive: (—o, —0.7) and (0.7, =);
negative: (—0.7, 0.7)



In Exercises 23 and 24, use the graph of the function f' to estimate the
intervals on which the function f is (a) increasing or (b) decreasing.
Also, (c) estimate the x-coordinates of all local extreme values.

23. y (a) (—o0, —2] and [0, 2]
) ' (b) [—2, 0] and [2, =)
B Yy=fF@) (¢)Local maxima:x = —2andx = 2:

local minimum: x =0
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24. y (@) [—2,2] (b)(—o, —2] and [2, )
t y=fx) (¢) Local maximum: x = 2;
B local minimum: x = —2
| | -




