5-1 Operations with Polynomials

ConceptSummary Properties of Exponents		
For any real numbers x and y, integers a and b:		
Property	Definition	Examples
Product of Powers	$x^a \cdot x^b = x^{a+b}$	$3^{2} \cdot 3^{4} = 3^{2+4} \text{ or } 3^{6}$ $p^{2} \cdot p^{9} = p^{2+9} \text{ or } p^{11}$
Quotient of Powers	$\frac{x^a}{x^b} = x^{a-b}, x \neq 0$	$\frac{9^5}{9^2} = 9^{5-2} \text{ or } 9^3$ $\frac{b^6}{b^4} = b^{6-4} \text{ or } b^2$
Negative Exponent	$x^{-a} = \frac{1}{x^a}$ and $\frac{1}{x^{-a}} = x^a$, $x \neq 0$	$3^{-5} = \frac{1}{3^{5}}$ $\frac{1}{b^{-7}} = b^{7}$
Power of a Power	$(x^a)^b = x^{ab}$	$(3^3)^2 = 3^3 \cdot 2$ or 3^6 $(d^2)^4 = d^2 \cdot 4$ or d^8
Power of a Product	$(xy)^{\frac{a}{a}}=x^{a}y^{a}$	$(2k)^4 = 2^4 k^4 \text{ or } 16k^4$ $(ab)^3 = a^3 b^3$
Power of a Quotient	$\left(\frac{x}{y}\right)^{a} = \frac{x^{a}}{y^{a}}, y \neq 0, \text{ and}$ $\left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^{a} \text{ or } \frac{y^{a}}{x^{a}}, x \neq 0, y \neq 0$	$\left(\frac{x}{y}\right)^2 = \frac{x^2}{y^2}$ $\left(\frac{a}{b}\right)^{-5} = \frac{b^5}{a^5}$
Zero Power	$x^0 = 1, x \neq 0$	7 ⁰ = 1

Example 1 Simplify Expressions

Simplify each expression. Assume that no variable equals 0.

a. $(2a^{-2})(3a^3b^2)(c^{-2})$

$$(2a^{-2})(3a^3b^2)(c^{-2}) \qquad \qquad \text{Original expression}$$

$$= 2\Big(\frac{1}{a^2}\Big)(3a^3b^2)\Big(\frac{1}{c^2}\Big) \qquad \qquad \text{Definition of negative exponents}$$

$$= \Big(\frac{2}{a \cdot a}\Big)(3 \cdot a \cdot a \cdot a \cdot b \cdot b)\Big(\frac{1}{c \cdot c}\Big) \qquad \qquad \text{Definition of exponents}$$

$$= \Big(\frac{2}{a \cdot a}\Big)(3 \cdot a \cdot a \cdot a \cdot b \cdot b)\Big(\frac{1}{c \cdot c}\Big) \qquad \qquad \text{Divide out common factors.}$$

$$= \frac{6ab^2}{c^2} \qquad \qquad \text{Simplify.}$$

b. $\frac{q^2r^4}{a^7r^3}$

$$\frac{q^2r^4}{q^7r^3} = q^2 - 7 \cdot r^4 - 3$$
 Quotient of powers
$$= q^{-5}r$$
 Subtract powers.
$$= \frac{r}{q^5}$$
 Simplify.

Example 1

Simplify. Assume that no variable equals 0.

1.
$$(2a^3b^{-2})(-4a^2b^4)$$
 2. $\frac{12x^4y^2}{2xy^5} \frac{6x^3}{y^3}$

2.
$$\frac{12x^4y^2}{2xy^5} \frac{6x^3}{y^3}$$

c. $\left(\frac{-2a^4}{h^2}\right)^3$ $\left(\frac{-2a^4}{b^2}\right)^3 = \frac{(-2a^4)^3}{(b^2)^3}$ Power of a quotient $=\frac{(-2)^3(a^4)^3}{(b^2)^3}$

$$= \frac{(-2)^{6}(a^{7})}{(b^{2})^{3}}$$
 Power of a product
$$= \frac{-8a^{12}}{b^{6}}$$
 Power of a power

3.
$$\left(\frac{2a^2}{3b}\right)^3 \frac{8a^6}{27h^3}$$
 4. $\left(6g^5h^{-4}\right)^3 \frac{216g^{15}}{h^{12}}$

Operations With Polynomials The degree of a polynomial is the degree of the monomial with the greatest degree.

Example 2 Degree of a Polynomial

Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

a.
$$\frac{1}{4}x^4y^3 - 8x^5$$

This expression is a polynomial because each term is a monomial. The degree of the first term is 4 + 3 or 7, and the degree of the second term is 5. The degree of the polynomial is 7.

b.
$$\sqrt{x} + x + 4$$

This expression is not a polynomial because \sqrt{x} is not a monomial.

c.
$$x^{-3} + 2x^{-2} + 6$$

This expression is not a polynomial because x^{-3} and x^{-2} are not monomials: $x^{-3} = \frac{1}{r^3}$ and $x^{-2} = \frac{1}{r^2}$. Monomials cannot contain variables in the denominator.

GuidedPractice

2A.
$$\frac{x}{y} + 3x^2$$
 No; $\frac{x}{y}$ is not a monomial. **2B.** $x^5y + 9x^4y^3 - 2xy$ yes; **7**

2B.
$$x^5y + 9x^4y^3 - 2xy$$
 yes; 7

Example 2 Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

5.
$$3x + 4y$$
 yes;

5.
$$3x + 4y$$
 yes; **1 6.** $\frac{1}{2}x^2 - 7y$ yes; **2 7.** $x^2 + \sqrt{x}$ no **8.** $\frac{ab^3 - 1}{az^4 + 3}$ no

7.
$$x^2 + \sqrt{x}$$
 no

8.
$$\frac{ab^3-1}{az^4+3}$$
 no

Example 3 Simplify Polynomial Expressions

Simplify each expression.

a.
$$(4x^2 - 5x + 6) - (2x^2 + 3x - 1)$$

Remove parentheses, and group like terms together.

$$(4x^{2} - 5x + 6) - (2x^{2} + 3x - 1)$$

$$= 4x^{2} - 5x + 6 - 2x^{2} - 3x + 1$$

$$= (4x^{2} - 2x^{2}) + (-5x - 3x) + (6 + 1)$$

$$= 2x^{2} - 8x + 7$$
Distribute the -1.

Group like terms.

Combine like terms.

Example 4 Simplify by Using the Distributive Property

Find $3x(2x^2 - 4x + 6)$.

$$3x(2x^2 - 4x + 6) = 3x(2x^2) + 3x(-4x) + 3x(6)$$
$$= 6x^3 - 12x^2 + 18x$$

Distributive Property

Multiply the monomials.

b. $(6x^2 - 7x + 8) + (-4x^2 + 9x - 5)$

Align like terms vertically and add.

$$6x^{2} - 7x + 8$$

$$(+) -4x^{2} + 9x - 5$$

$$2x^{2} + 2x + 3$$

Example 6 Multiply Polynomials

Find $(n^2 + 4n - 6)(n + 2)$.

$$(n^{2} + 4n - 6)(n + 2)$$

$$= n^{2}(n + 2) + 4n(n + 2) + (-6)(n + 2)$$

$$= n^{2} \cdot n + n^{2} \cdot 2 + 4n \cdot n + 4n \cdot 2 + (-6) \cdot n + (-6) \cdot 2$$

$$= n^{3} + 2n^{2} + 4n^{2} + 8n - 6n - 12$$

$$= n^{3} + 6n^{2} + 2n - 12$$

Distributive Property
Distributive Property
Multiply monomials.
Combine like terms.

Examples 3-4, and 6

Simplify. **9.** $-2x^2 - 6x + 3$

9.
$$(x^2 - 5x + 2) - (3x^2 + x - 1)$$

11.
$$2a(4b+5)$$
 8 $ab+10a$

13.
$$(n-9)(n+7)$$
 $n^2-2n-63$

10.
$$(3a+4b)+(6a-6b)$$
 9a-2b

12.
$$3x^2(2xy - 3xy^2 + 4x^2y^3)$$
 $6x^3y - 9x^3y^2 + 12x^4y^3$

14.
$$(a+4)(a-6)$$
 $a^2-2a-24$

DRIVING The U.S. Department of Transportation limits the time a truck driver can work between periods of rest to ten hours. For the first part of his shift, Tom drives at a speed of 60 miles per hour, and for the second part of the shift, he drives at a speed of 70 miles per hour. Write a polynomial to represent the distance driven.

$$60x + 70(10 - x)$$
 Original expression
= $60x + 700 - 70x$ Distributive Property
= $700 - 10x$ Combine like terms.

The polynomial is 700 - 10x.

- **Example 5**
- **15. EXERCISE** Tara exercises 75 minutes a day. She does cardio, which burns an average of 10 Calories per minute, and weight training, which burns an average of 7.5 Calories per minute. Write a polynomial to represent the amount of Calories Tara burns in one day if she does x minutes of weight training. **750 2.5**x

Simplify. Assume that no variable equals 0. 17. $-8b^5c^3$ Example 1

16.
$$\frac{20x^4}{v^2}$$

16.
$$(5x^3y^{-5})(4xy^3)$$

17.
$$(-2b^3c)(4b^2c^2)$$

18.
$$\frac{a^3n^7}{an^4}$$
 a^2n^3

16.
$$(5x^3y^{-5})(4xy^3)$$
 17. $(-2b^3c)(4b^2c^2)$ **18.** $\frac{a^3n^7}{an^4}$ $\frac{a^2n^3}{a^2}$ **19.** $\frac{-y^3z^5}{y^2z^3}$ **-yz²**

20.
$$\frac{-7x^5y^5z^4}{21x^7y^5z^2} \frac{z^2}{-3x^2}$$
 21. $\frac{9a^7b^5c^5}{18a^5b^9c^3} \frac{a^2c^2}{2b^4}$ 22. $(n^5)^4 n^{20}$ 23. $(z^3)^6 z^{18}$

21.
$$\frac{9a^7b^5c^5}{18a^5b^9c^3}$$
 $\frac{a^2c^2}{2b^4}$

22.
$$(n^5)^4$$
 n^{20}

23.
$$(z^3)^6$$
 z^{18}

Example 2 Determine whether each expression is a polynomial. If it is a polynomial, state the degree of the polynomial.

24.
$$2x^2 - 3x + 5$$
 Ves: 2

25.
$$a^3 - 11$$
 yes; 3

26.
$$\frac{5np}{n^2} - \frac{2g}{h}$$

27.
$$\sqrt{m-7}$$
 no

24. $2x^2 - 3x + 5$ 25. $a^3 - 11$ yes; 3 26. $\frac{5np}{n^2} - \frac{2g}{h}$ no 27. $\sqrt{m-7}$ no yes; 2 28. $2a^2 - a - 2$ 29. $3b^2 + 6b - 5$ 33. $a^4 + a^3b - 3a^2b - 4ab^2 - b^3$ 28. $(6a^2 + 5a + 10) - (4a^2 + 6a + 12)$ 29. $(7b^2 + 6b - 7) - (4b^2 - 2)$ 34. $-6a^3 + 4a^2 + 6a^2 + 6a$

20
$$(7h^2 + 6h - 7) - (4h^2 - 2)$$

34.
$$-6a^3 + 4a^2 +$$

$$30 3n(nn - 2) 3nn^2 - 3n7$$

31.
$$4x(2x^2 + y)$$
 8x³ + 4xy

35.
$$10c^3 - c^2 + 4c$$

32.
$$(x-y)(x^2+2xy+y^2)$$

(33)
$$(a+b)(a^3-3ab-b^2)$$

36.
$$10x^2y - 5xy^2 +$$

34.
$$4(a^2 + 5a - 6) - 3(2a^3 + 4a - 5)$$

28.
$$(6a^2 + 5a + 10) - (4a^2 + 6a + 12)$$

30. $3p(np - z)$ $3np^2 - 3pz$
31. $4x(2x^2 + y)$ $8x^3 + 4xy$
32. $(x - y)(x^2 + 2xy + y^2)$
33. $(a + b)(a^3 - 3ab - b^2)$
34. $4(a^2 + 5a - 6) - 3(2a^3 + 4a - 5)$
35. $5c(2c^2 - 3c + 4) + 2c(7c - 8)$
36. $10x^2y - 5xy^2 + 6x^2y^2 + 36y^2$
37. $12a^2b + 8a^2b^2 - 6x^2y^2 + 36y^2$

36.
$$5xy(2x-y)+6y^2(x^2+6)$$

37.
$$3ab(4a-5b)+4b^2(2a^2+1)$$

$$15ab^2 + 4b^2$$

38.
$$(x - y)(x + y)(2x + y)$$

 $2x^3 + x^2y - 2xy^2 - y^3$

39.
$$(a + b)(2a + 3b)(2x - y)$$

 $4a^2x - 2a^2y + 10abx - 5aby + 6b^2x - 3b^2y$

Example 5

- 40. PAINTING Connor has hired two painters to paint his house. The first painter charges \$12 per hour and the second painter charges \$11 per hour. It will take 15 hours of labor to paint the house.
 - a. Write a polynomial to represent the total cost of the job if the first painter does x hours of the labor. x + 165
 - **b.** Write a polynomial to represent the total cost of the job if the second painter does y hours of the labor. 180 - y