6-1 Graphing Systems of Equations

What You'll Learn

Scan the text under the *Now* heading. List two things you will learn about in the lesson.

Nome and classify

Systems

Solve systems by

graphing

Work on this for the next couple of minutes. I will call on one of you afterward.

Active Vocabulary

Review Vocabulary Make a table of values which satisfy the equation x + y = 13. (Lesson 3-1)

		2	×+ \	<u> </u>			
\boldsymbol{x}	0	J	3	10	• • •		
у		12		1000			

Is it possible to make a table that shows all ordered pairs that satisfy this equation? Justify your answer.

Jufunire

How can you show all of the ordered pairs for the equation?

with a picture.

New Vocabulary Match the term with its definition by drawing a line.

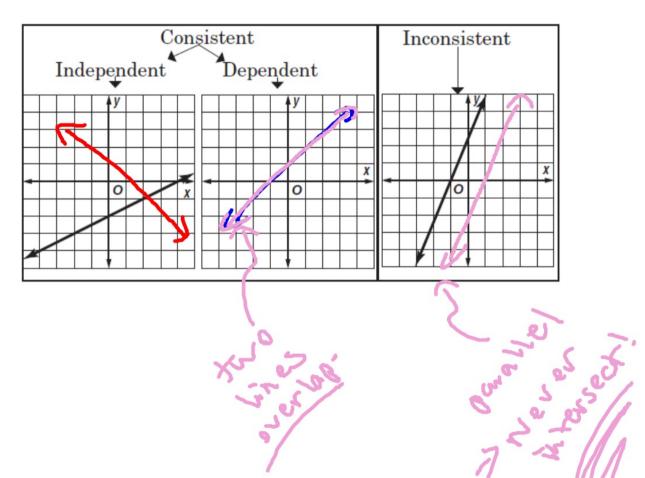
consistent

a set of two or more equations that contain the same variables

inconsistent.

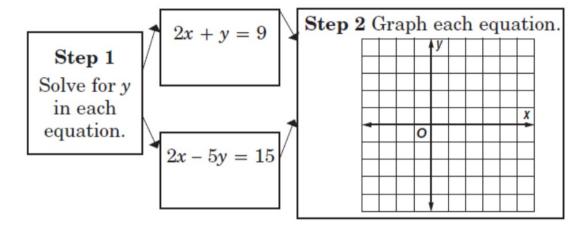
a system of equations that has at least one solution

system of equations a system of equations that has an infinite number of solutions


independent a system of equations that has exactly one solution

dependent a system of equations that has no solutions

Main Idea Details

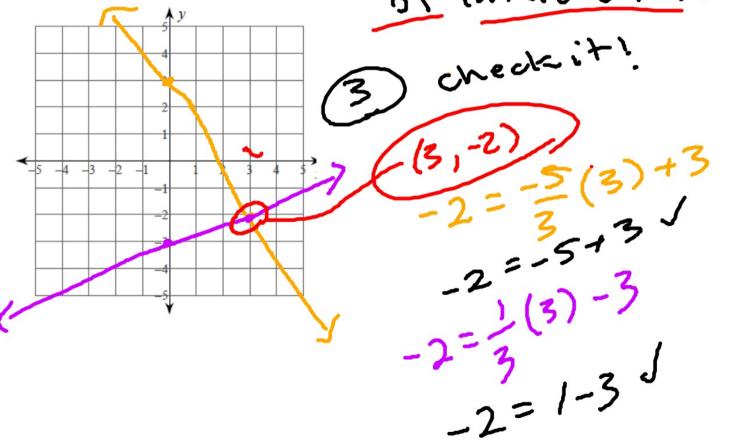

Possible Number of Solutions

oer of Add a line to each graph so that the given condition is satisfied.

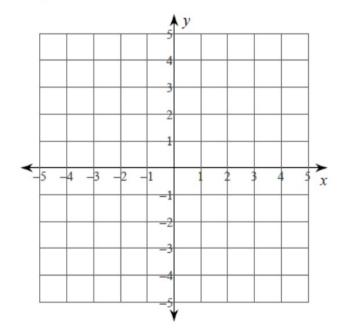
Solve by Graphing

Solve the system of equations by graphing.

Step 3 Find the solution. The lines intersect at point

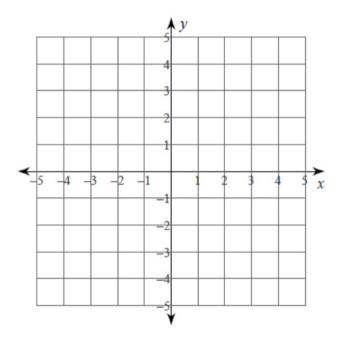

Solve each system by graphing.

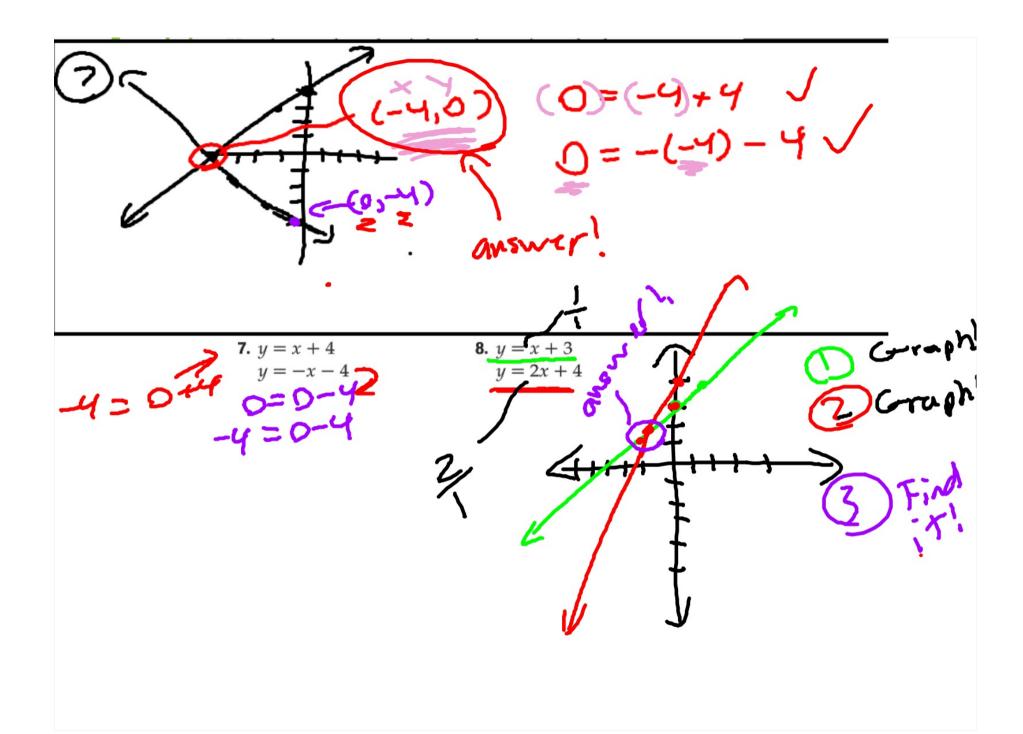
O Graph each equation.


1)
$$y = -\frac{5}{3}x + 3$$

 $y = \frac{1}{3}x - 3$

2) Find the point of intersection.


Solve each system by graphing.

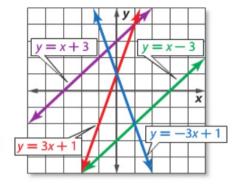

2)
$$y = 4x + 3$$

 $y = -x - 2$

Solve each system by graphing.

4)
$$y = -1$$

 $y = -\frac{5}{2}x + 4$



Example 1 Use the graph at the right to determine whether each system is consistent or inconsistent and if it is independent or dependent.

1.
$$y = -3x + 1$$

 $y = 3x + 1$ consistent and independent

2.
$$y = 3x + 1$$
 consistent and $y = x - 3$ independent

3.
$$y = x - 3$$
 $y = x + 3$ **inconsistent**

4.
$$y = x + 3$$
 consistent and $x - y = -3$ dependent

5.
$$x - y = -3$$
 consistent and independent

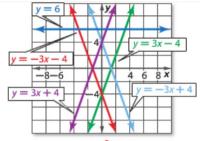
5.
$$x - y = -3$$
 consistent and $y = -3x + 1$ consistent and $y = x - 3$ independent $y = x - 3$

Example 2 Graph each system and determine the number of solutions that it has. If it has one solution, name it. 7-8. See margin.

7.
$$y = x + 4$$

8.
$$y = x + 3$$

Example 1 Use the graph at the right to determine whether each system is consistent or inconsistent and if it is independent or dependent.


10.
$$y = 6$$
 $y = 3x + 4$

11.
$$y = 3x + 4$$
 $y = -3x + 4$

12.
$$y = -3x + 4$$

 $y = -3x - 4$

14.
$$3x - y = -4$$

 $y = 3x + 4$

15.
$$3x - y = 4$$

 $3x + y = 4$

7=mx+b

Example 2 Graph each system and determine the number of solutions that it has. If it has one solution, name it. 16–24. See margin.

16.
$$y = -3$$
 $y = x - 3$

17.
$$y = 4x + 2$$
 $y = -2x - 3$

18.
$$y = x - 6$$
 $y = x + 2$

19.
$$x + y = 4$$

 $3x + 3y = 12$

20.
$$x - y = -2$$

 $-x + y = 2$

21.
$$x + 2y = 3$$
 $x = 5$

22.
$$2x + 3y = 12$$

 $2x - y = 4$

23.
$$2x + y = -4$$

24.
$$2x + 2y = 6$$

 $5y + 5x = 15$

10. consistent and independent

- 11. consistent and independent
- 12. inconsistent
- 13. consistent and independent
- 14. consistent and dependent
- 15. consistent and independent

(20) x-y=-2 x-y=-2 x+y=2 -x -x

-7= x+2

consistent.

$$21 + 2y = 3$$

$$3 = 5$$

$$2 + 2y = 3$$

$$3 + 2y = 3$$

$$4 + 2y$$