6-1 Operations of Functions

KeyConcept Operations on Functions		
Operation	Definition	Example Let $f(x) = 2x$ and $g(x) = -x + 5$.
Addition	(f+g)(x)=f(x)+g(x)	2x + (-x + 5) = x + 5
Subtraction	(f-g)(x)=f(x)-g(x)	2x - (-x + 5) = 3x - 5
Multiplication	$(f \cdot g)(x) = f(x) \cdot g(x)$	$2x(-x+5) = -2x^2 + 10x$
Division	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$	$\frac{2x}{-x+5}, x \neq 5$

$$=\frac{x^2+7x+12}{3x-4}, x \neq \frac{4}{3}$$
 Substitution

 $= \frac{x^2 + 7x + 12}{3x - 4}, x \neq \frac{4}{3}$ Substitution
Because $x = \frac{4}{3}$ makes the denominator $3x - 4 = 0, \frac{4}{3}$ is excluded from the domain of $\left(\frac{f}{g}\right)(x)$.

Examples 1–2 Find (f+g)(x), (f-g)(x), $(f \cdot g)(x)$, and (f/g)(x) for each f(x) and g(x). Indicate any restrictions in domain or range.

1, 2. see margin.

1.
$$f(x) = x + 2$$

 $g(x) = 3x - 1$

2.
$$f(x) = x^2 - 5$$

 $g(x) = -x + 8$

$$(x+2) - (3x-1) = -7x + 3$$

1.
$$(f+g)(x) = 4x + 1$$
; $(f-g)(x) = -2x + 3$; $(f \cdot g)(x) = 3x^2 + 5x - 2$; $(\frac{f}{g})(x) = \frac{x+2}{3x-1}$, $x \neq \frac{1}{3}$

2.
$$(f+g)(x) = x^2 - x + 3;$$

 $(f-g)(x) = x^2 + x - 13;$
 $(f \cdot g)(x) = -x^3 + 8x^2 + 5x - 40;$
 $(\frac{f}{g})(x) = \frac{x^2 - 5}{-x + 8}, x \neq 8$

Composition of Functions Another method used to combine functions is a composition of functions. In a **composition of functions**, the results of one function are used to evaluate a second function.

ReadingMath

Composition of Functions

The composition of f and g, denoted by $f \circ g$ or f[g(x)], is read f of g.

KeyConcept Composition of Functions

Words Suppose f and g are functions such that the range of g is a subset of the domain of f. Then the composition function $f \circ g$ can be described by

$$[f\circ g](x)=f[g(x)].$$

The composition of two functions may not exist. Given two functions f and g, $[f \circ g](x)$ is defined only if the range of g(x) is a subset of the domain of f. Likewise, $[g \circ f](x)$ is defined only if the range of f(x) is a subset of the domain of g.

Example 3 Compose Functions

For each pair of functions, find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function.

a. $f = \{(1, 8), (0, 13), (15, 11), (14, 9)\}, g = \{(8, 15), (5, 1), (10, 14), (9, 0)\}$

To find $f \circ g$, evaluate g(x) first. Then use the range to evaluate f(x).

$$f[g(8)] = f(15) \text{ or } 11$$
 $g(8) = 15$

$$f[g(10)] = f(14) \text{ or } 9$$
 $g(10) = 14$

$$f[g(5)] = f(1) \text{ or } 8$$
 $g(5) = 1$ $f[g(9)] = f(0) \text{ or } 13$ $g(9) = 0$

$$f[g(9)] = f(0)$$
 or 13

$$g(9) = 0$$

$$f \circ g = \{(8, 11), (5, 8), (10, 9), (9, 13)\}, D = \{5, 8, 9, 10\}, R = \{8, 9, 11, 13\}$$

To find $g \circ f$, evaluate f(x) first. Then use the range to evaluate g(x).

$$g[f(1)] = g(8)$$
 or 15

$$f(1) = 8$$

$$g[f(15)] = g(11)$$

g(11) is undefined.

$$g[f(0)] = g(13)$$

$$g(13)$$
 is undefined.

$$g[f(14)] = g(9)$$
 or 0

$$f(14) = 0$$

Because 11 and 13 are not in the domain of g, $g \circ f$ is undefined for x = 11 and x = 13. However, g[f(1)] = 15 and g[f(14)] = 0, so $g \circ f = \{(1, 15), (14, 0)\}$, $D = \{5, 8, 9, 10\}, \text{ and } R = \{8, 9, 11, 13\}.$

b. f(x) = 2a - 5, g(x) = 4a

$$[f \circ g](x) = f[g(x)]$$
 Composition of functions
$$[g \circ f](x) = g[f(x)]$$

$$= f(4a)$$
 Substitute.
$$= g(2a - 5)$$

$$= 2(4a) - 5$$
 Substitute again.
$$= 4(2a - 5)$$

$$= 8a - 5$$
 Simplify.
$$= 8a - 20$$

For $[f \circ g](x)$, D = {all real numbers} and R = {all real numbers}, and for $[g \circ f](x)$, $D = \{all \text{ real numbers}\}\$ and $R = \{all \text{ real numbers}\}\$.

For each pair of functions, find $f \circ g$ and $g \circ f$, if they exist. State the domain **Example 3** and range for each composed function. 3, 4. 300 margin.

3.
$$f = \{(2, 5), (6, 10), (12, 9), (7, 6)\}$$

 $g = \{(9, 11), (6, 15), (10, 13), (5, 8)\}$

4.
$$f = \{(-5, 4), (14, 8), (12, 1), (0, -3)\}$$

 $g = \{(-2, -4), (-3, 2), (-1, 4), (5, -6)\}$

Find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function. 5, 6. See margin.

5.
$$f(x) = -3x$$

 $g(x) = 5x - 6$

6.
$$f(x) = x + 4$$

 $g(x) = x^2 + 3x - 10$

- **3.** $f \circ g$ is undefined, $D = \emptyset$, $R = \emptyset$: $g \circ f = \{(2, 8), (6, 13), (12, 11), (12, 11), (12, 11), (13, 12), (14, 12), (15, 12)$ (7, 15), D = $\{2, 6, 7, 12\}$, R = {8, 11, 13, 15}.
- 4 $f \circ g$ is undefined, $D = \emptyset$, $R = \emptyset$; $g \circ f = \{(0, 2)\}, D = \{0\}, R = \{2\}.$
- **5.** $[f \circ g](x) = -15x + 18$, $R = \{all multiples of 3\}$ $[q \circ f](x) = -15x - 6$
- **6.** $[f \circ g](x) = x^2 + 3x 6$; $[a \circ f](x) = x^2 + 11x + 18$

SHOPPING A new car dealer is discounting all new cars by 12%. At the same time, the manufacturer is offering a \$1500 rebate on all new cars. Mr. Navarro is buying a car that is priced \$24,500. Will the final price be lower if the discount is applied before the rebate or if the rebate is applied before the discount?

Understand Let x represent the original price of a new car, d(x) represent the price of a car after the discount, and r(x) the price of the car after the rebate.

Plan Write equations for d(x) and r(x).

The original price is discounted by 12%. d(x) = x - 0.12x

There is a \$1500 rebate on all new cars. r(x) = x - 1500

Solve If the discount is applied before the rebate, then the final price of Mr. Navarro's new car is represented by [r ∘ d](24,500).

$$[r \circ d](x) = r[d(x)]$$

$$[r \circ d](24,500) = r[24,500 - 0.12(24,500)]$$

$$= r(24,500 - 2940)$$

$$= r(21,560)$$

$$= 21,560 - 1500$$

$$= 20,060$$

If the rebate is given *before* the discount is applied, then the final price of Mr. Navarro's car is represented by $[d \circ r](24,500)$.

$$[d \circ r](x) = d[r(x)]$$

$$[d \circ r](24,500) = d(24,500 - 1500)$$

$$= d(23,000)$$

$$= 23,000 - 0.12(23,000)$$

$$= 23,000 - 2760$$

$$= 20,240$$

 $[r \circ d](24,500) = 20,060$ and $[d \circ r](24,500) = 20,240$. So, the final price of the car is less when the discount is applied before the rebate.

7. CSS MODELING Dora has 8% of her earnings deducted from her paycheck for a college savings plan. She can choose to take the deduction either before taxes are withheld, which reduces her taxable income, or after taxes are withheld. Dora's tax rate is 17.5%. If her pay before taxes and deductions is \$950, will she save more money if the deductions are taken before or after taxes are withheld? Explain. See margin.

7. Either way, she will have \$228.95 taken from her paycheck. If she takes the college savings plan deduction before taxes, \$76 will go to her college plan and \$152.95 will go to taxes. If she takes the college savings plan deduction after taxes, only \$62.70 will go to her college plan and \$166.25 will go to taxes.

Practice and Problem Solving

Examples 1–2 Find (f+g)(x), (f-g)(x), $(f \cdot g)(x)$, and $(\frac{f}{g})(x)$ for each f(x) and g(x). Indicate any restrictions in domain or range. **8–15.** See margin.

8.
$$f(x) = 2x$$

 $g(x) = -4x + 5$

9.
$$f(x) = x - 1$$

 $g(x) = 5x - 2$

10.
$$f(x) = x^2$$
 $g(x) = -x + 1$

$$f(x) = 3x$$

$$g(x) = -2x + 6$$

12.
$$f(x) = x - 2$$

 $g(x) = 2x - 7$

13.
$$f(x) = x^2$$
 $g(x) = x - 5$

14.
$$f(x) = -x^2 + 6$$

 $g(x) = 2x^2 + 3x - 5$

15.
$$f(x) = 3x^2 - 4$$

 $g(x) = x^2 - 8x + 4$

- **16. POPULATION** In a particular county, the population of the two largest cities can be modeled by f(x) = 200x + 25 and g(x) = 175x 15, where x is the number of years since 2000 and the population is in thousands.
 - **a.** What is the population of the two cities combined after any number of years? (f + g)(x) = 375x + 10
 - **b.** What is the difference in the populations of the two cities? (f-g)(x) = 25x + 40

Example 3 For each pair of functions, find $f \circ g$ and $g \circ f$, if they exist. State the domain and range for each composed function. 17–20. See Chapter 6 Answer Appendix.

17.
$$f = \{(-8, -4), (0, 4), (2, 6), (-6, -2)\}$$
 $g = \{(4, -4), (-2, -1), (-4, 0), (6, -5)\}$

18.
$$f = \{(-7, 0), (4, 5), (8, 12), (-3, 6)\}$$

 $g = \{(6, 8), (-12, -5), (0, 5), (5, 1)\}$

19.
$$f = \{(5, 13), (-4, -2), (-8, -11), (3, 1)\}$$

 $g = \{(-8, 2), (-4, 1), (3, -3), (5, 7)\}$

20.
$$f = \{(-4, -14), (0, -6), (-6, -18), (2, -2)\}$$
 $g = \{(-6, 1), (-18, 13), (-14, 9), (-2, -3)\}$

AUGUSTION AUGUSTON

8.
$$(f+g)(x) = -2x + 5$$
; $(f-g)(x) = 6x - 5$; $(f \cdot g)(x) = -8x^2 + 10x$; $(\frac{f}{g})(x) = \frac{2x}{-4x + 5}$, $x \neq \frac{5}{4}$

9.
$$(f+g)(x) = 6x - 3$$
; $(f-g)(x) = -4x + 1$; $(f \cdot g)(x) = 5x^2 - 7x + 2$; $(\frac{f}{g})(x) = \frac{x-1}{5x-2}$, $x \neq \frac{2}{5}$

10.
$$(f+g)(x) = x^2 - x + 1; (f-g)(x)$$

= $x^2 + x - 1; (f \cdot g)(x) =$
 $-x^3 + x^2; \left(\frac{f}{g}\right)(x) = \frac{x^2}{-x+1}, x \neq 1$

11.
$$(f+g)(x) = x+6$$
; $(f-g)(x) = 5x-6$; $(f \cdot g)(x) = -6x^2 + 18x$; $(\frac{f}{g})(x) = \frac{3x}{-2x+6}$, $x \neq 3$

12.
$$(f+g)(x) = 3x - 9$$
; $(f-g)(x) = -x + 5$; $(f \cdot g)(x) = 2x^2 - 11x + 14$; $(\frac{f}{g})(x) = \frac{x-2}{2x-7}, x \neq \frac{7}{2}$

13.
$$(f+g)(x) = x^2 + x - 5;$$

 $(f-g)(x) = x^2 - x + 5;$
 $(f \cdot g)(x) = x^3 - 5x^2;$
 $(\frac{f}{g})(x) = \frac{x^2}{x - 5}, x \neq 5$

14.
$$(f+g)(x) = x^2 + 3x + 1;$$

 $(f-g)(x) = -3x^2 - 3x + 11;$
 $(f \cdot g)(x) = -2x^4 - 3x^3 + 17x^2 + 18x - 30;$
 $(\frac{f}{g})(x) = \frac{-x^2 + 6}{2x^2 + 3x - 5}, x \neq 1$
or $-\frac{5}{2}$

15.
$$(f+g)(x) = 4x^2 - 8x$$
; $(f-g)(x) = 2x^2 + 8x - 8$; $(f \cdot g)(x) = 3x^4 - 24x^3 + 8x^2 + 32x - 16$; $(\frac{f}{g})(x) = \frac{3x^2 - 4}{x^2 - 8x + 4}$, $x \ne 4 \pm 2\sqrt{3}$

