

New Vocabulary

- monomial
- constant

Multiply Monomials A monomial is a number, a variable, or the product of a number and one or more variables with nonnegative integer exponents. It has only one term. In the formula to calculate the horsepower of a car, the term $w\left(\frac{v}{234}\right)^3$ is a monomial.

An expression that involves division by a variable, like $\frac{ab}{c}$, is not a monomial.

A **constant** is a monomial that is a real number. The monomial 3x is an example of a *linear expression* since the exponent of x is 1. The monomial $2x^2$ is a *nonlinear expression* since the exponent is a positive number other than 1.

EXAMPLE 1

Identify Monomials

Determine whether each expression is a monomial. Explain your reasoning.

A. 17 - c **Answer:** No; the expression involves subtraction, so it has more than one term.

B. $8f^2g$ Answer: Yes; the expression is the product of a number and two variables.

C. $\frac{3}{4}$ Answer: Yes; the expression is a constant.

D. $\frac{5}{t}$ Answer: No; the expression involves division by a variable.

EXAMPLE 1 Check Your Progress

Which expression is a monomial?

A.
$$x^5$$

B.
$$3p - 1$$

C.
$$\frac{9x}{y}$$

D.
$$\frac{c}{d}$$

EXAMPLE 1

Check Your Progress

Which expression is a monomial?

B.
$$3p - 1$$

C.
$$\frac{9x}{y}$$

D.
$$\frac{c}{d}$$

Multiplication Properties of Exponents

KeyConcept Product of Powers

Words To multiply two powers that have the same base, add their exponents.

For any real number a and any integers m and p, $a^m \cdot a^p = a^{m+p}$. Symbols

 $b^3 \cdot b^5 = b^{3+5}$ or b^8 $g^4 \cdot g^6 = g^{4+6} \text{ or } g^{10}$ Examples

$$\frac{b \cdot b \cdot b}{b \cdot b \cdot b} = \frac{b \cdot b \cdot b}{b \cdot b} = \frac{8}{b}$$

Multiplication Properties of Exponents

EXAMPLE 2 Product of Powers

A. Simplify $(r^4)(-12r^7)$.

$$(r^4)(-12r^7) = [1 \bullet (-12)](r^4)(r^7)$$
 Group the coefficients and the variables.

=
$$[1 \bullet (-12)](r^{4+7})$$
 Product of Powers

$$=-12r^{11}$$
 Simplify.

7-1 Multiplication Properties of Exponents

EXAMPLE 2 Product of Powers

B. Simplify $(6cd^5)(5c^5d^2)$.

$$(6cd^5)(5c^5d^2) = (6 \bullet 5)(c \bullet c^5)(d^5 \bullet d^2)$$
 Group the coefficients and the variables.

=
$$(6 \bullet 5)(c^{1+5})(d^{5+2})$$
 Product of Powers

$$= 30c^6d^7$$
 Simplify.

Answer: $30c^6d^7$

7-1 Multiplication Properties of Exponents

KeyConcept Power of a Power

Words To find the power of a power, multiply the exponents.

Symbols For any real number a and any integers m and p, $(a^m)^p = a^{m-p}$.

Examples $(b^3)^5 = b^3 \cdot 5$ or b^{15} $(g^6)^7 = g^6 \cdot 7$ or g^{42}

7–1

Multiplication Properties of Exponents

EXAMPLE 3

Power of a Power

Simplify $[(2^3)^3]^2$.

$$[(2^3)^3]^2 = (2^{3 \cdot 3})^2$$

Power of a Power

$$=(2^9)^2$$

Simplify.

$$= 2^{9 \cdot 2}$$

Power of a Power

$$= 2^{18}$$
 or 262,144

Simplify.

Answer: 2¹⁸ or 262,144

7-1 Multiplication Properties of Exponents

KeyConcept Power of a Product

Words To find the power of a product, find the power of each factor and multiply.

Symbols For any real numbers a and b and any integer m, $(ab)^m = a^m b^m$.

Example $(-2xy^3)^5 = (-2)^5x^5y^{15}$ or $-32x^5y^{15}$

EXAMPLE 4 Power of a Product

GEOMETRY Find the volume of a cube with side length 5xyz.

EXAMPLE 5 Simplify Expressions

Simplify $[(8g^3h^4)^2]^2(2gh^5)^4$.

Check Your Understanding

Step-by-Step Solutions begin on page R13.

Example 1 Determine whether each expression is a monomial. Write yes or no. Explain your reasoning. 1-6. See margin.

1. 15

2. 2 - 3a

3. 500

4. $-15g^2$

6. 7b + 9

Examples 2-3 Simplify each expression.

- 7. k(k3) k4
- 8. $m^4(m^2)$ m⁶
- $9 2q^2(9q^4) 18q^6$
- **10.** $(5u^4v)(7u^4v^3)$ **35** u^8v^4 **11.** $[(3^2)^2]^2$ **38 or 6561 12.** $(xy^4)^6$ x^6y^{24}
- 13. $(4a^4b^9c)^2$ 16 $a^8b^{18}c^2$ 14. $(-2f^2g^3h^2)^3$ -8 $f^6g^9h^6$ 15. $(-3p^5t^6)^4$ 81 $p^{20}t^{24}$

Example 4 16. GEOMETRY The formula for the surface area of a cube is $SA = 6s^2$, where SA is the surface area and s is the length of any side.

- **a.** Express the surface area of the cube as a monomial. $6a^6b^2$
- **b.** What is the surface area of the cube if a = 3 and b = 4? 69.984 units²

Example 5 Simplify each expression.

Additional Answers

- 1. Yes; constants are monomials.
- 2. No; there is subtraction and more than one term.
- 3. No: there is a variable in the denominator.
- 4. Yes: this is a product of a number and variables.
- 5. Yes; this is a product of a number and variables.
- 6. No: there is addition and more than one term.

Practice and Problem Solving

23.
$$2c + 2$$

24.
$$\frac{-2g}{4h}$$

25.
$$\frac{5k}{10}$$

26.
$$6m + 3n$$

Examples 2–3 Simplify each expression.

27
$$(q^2)(2q^4)$$
 2 q^6

28.
$$(-2u^2)(6u^6)$$
 —12 u^8

28.
$$(-2u^2)(6u^6)$$
 —12 u^8 **29.** $(9w^2x^8)(w^6x^4)$ **9** w^8x^{12}

30.
$$(y^6z^9)(6y^4z^2)$$
 6 $y^{10}z^{11}$

31.
$$(b^8c^6d^5)(7b^6c^2d)$$
7 $b^{14}c^8d^6$

32.
$$(14fg^2h^2)(-3f^4g^2h^2)$$
 -42f⁵g⁴h

33.
$$(j^5k^7)^4$$
 $j^{20}k^{28}$

34.
$$(n^3p)^4$$
 $n^{12}p^4$

35.
$$[(2^2)^2]^2$$
 28 or 256

27.
$$(q^2)(2q^4)$$
 2 q^6 28. $(-2u^2)(6u^6)$ -12 u^6 29. $(9w^2x^8)(w^6x^4)$ 9 w^6x^{12} 30. $(y^6z^9)(6y^4z^2)$ 6 $y^{10}z^{11}$ 31. $(b^8c^6d^5)(7b^6c^2d)7b^{14}c^8d^6$ 32. $(14fg^2h^2)(-3f^4g^2h^2)$ -42 $f^5g^4h^4$ 33. $(j^5k^7)^4$ $j^{20}k^{28}$ 34. $(n^3p)^4$ $n^{12}p^4$ 35. $[(2^2)^2]^2$ 28 or 256 36. $[(3^2)^2]^4$ 37. $[(4r^2t)^3]^2$ 4096 $r^{12}t^6$ 38. $[(-2xy^2)^3]^2$ 64 x^6y^{12}

37.
$$[(4r^2t)^3]^2$$
 4096 $r^{12}t^6$

38.
$$\left[(-2xy^2)^3 \right]^2$$
 64x⁶y¹²

Example 4 **GEOMETRY** Express the area of each triangle as a monomial.

39.

20*c*5 d5

3 a3 h6

Additional Answers

- 21. Yes: constants are monomials.
- 22. Yes; this is a product of a number and variables.
- 23. No; there is addition and more than one term.
- 24. No: there is a variable in the denominator.
- 25. Yes; this can be written as the product of a number and a variable.
- 26. No: there is addition and more than one term.

Example 5 Simplify each expression.

41.
$$(2a^3)^4(a^3)^3$$
 16 a^{21}

43.
$$(2gh^4)^3[(-2g^4h)^3]^2$$
 512 $g^{27}h^{18}$

45.
$$(p^5r^2)^4(-7p^3r^4)^2(6pr^3)$$
 294 $p^{27}r^{19}$

47.
$$(5a^2b^3c^4)(6a^3b^4c^2)$$
 30 $a^5b^7c^6$

49.
$$(0.5x^3)^2$$
 0.25 x^6

51.
$$\left(-\frac{3}{4}c\right)^3 - \frac{27}{64}c^3$$

53.
$$(8y^3)(-3x^2y^2)(\frac{3}{8}xy^4)$$
 -9 x^3y^5

55.
$$(-3r^3w^4)^3(2rw)^2(-3r^2)^3(4rw^2)^3(2r^2w^3)^4$$
 2,985,984 $r^{28}w^{32}$

42.
$$(c^3)^2(-3c^5)^2$$
 9 c^{16}

44.
$$(5k^2m)^3[(4km^4)^2]^2$$
 32,000 $k^{10}m^{19}$

46.
$$(5x^2y)^2(2xy^3z)^3(4xyz)$$
 800 $x^8y^{12}z^4$

48.
$$(10xy^5z^3)(3x^4y^6z^3)$$
 30 $x^5y^{11}z^6$

50.
$$(0.4h^5)^3$$
 0.064 h^{15}

52.
$$\left(\frac{4}{5}a^2\right)^2 \frac{16}{25}a^4$$

53.
$$(8y^3)(-3x^2y^2)(\frac{3}{8}xy^4)$$
 -9 x^3y^9 **54.** $(\frac{4}{7}m)^2(49m)(17p)(\frac{1}{34}p^5)$ **8** m^3p^6