

# 7-3 Logarithms and Logarithmic Functions

**Logarithmic Functions and Expressions** Consider the exponential function  $f(x) = 2^x$  and its inverse. Recall that you can graph an inverse function by interchanging the *x*- and *y*-values in the ordered pairs of the function.

| $y=2^{x}$ |     |  |  |  |
|-----------|-----|--|--|--|
| X         | у   |  |  |  |
| -3        | 1/8 |  |  |  |
| -2        | 1/4 |  |  |  |
| -1        | 1/2 |  |  |  |
| 0         | 1   |  |  |  |
| 1         | 2   |  |  |  |
| 2         | 4   |  |  |  |
| 3         | 8   |  |  |  |

| $x=2^y$ |    |  |  |  |
|---------|----|--|--|--|
| Х       | у  |  |  |  |
| 1 8     | -3 |  |  |  |
| 1/4     | -2 |  |  |  |
| 1/2     | -1 |  |  |  |
| 1       | 0  |  |  |  |
| 2       | 1  |  |  |  |
| 4       | 2  |  |  |  |
| 8       | 3  |  |  |  |



The inverse of  $y = 2^x$  can be defined as  $x = 2^y$ . In general, the inverse of  $y = b^x$  is  $x = b^y$ . In  $x = b^y$ , the variable y is called the **logarithm** of x. This is usually written as  $y = \log_b x$ , which is read y equals  $\log_b x$  base y of y.



Words Let b and x be positive numbers,  $b \neq 1$ . The *logarithm of x with base b* is denoted

 $\log_b x$  and is defined as the exponent y that makes the equation  $b^y = x$  true.

Symbols Suppose b > 0 and  $b \ne 1$ . For x > 0, there is a number y such that

$$\log_b x = y$$
 if and only if  $b^y = x$ .

Example If  $\log_3 27 = y$ , then  $3^y = 27$ .

# **Example 1** Logarithmic to Exponential Form

Write each equation in exponential form.

a. 
$$\log_2 8 = 3$$

$$\log_2 8 = 3 \rightarrow 8 = 2^3$$

**b.** 
$$\log_4 \frac{1}{256} = -4$$
 $\log_4 \frac{1}{256} = -4 \to \frac{1}{256} = 4^{-4}$ 

# **Example 1** Write each equation in exponential form.

1. 
$$\log_8 512 = 3$$
 8<sup>3</sup> = 512

**2.** 
$$\log_5 625 = 4$$
 **5**<sup>4</sup> **= 625**



# KeyConcept Logarithm with Base b

Words Let b and x be positive numbers,  $b \neq 1$ . The *logarithm of x with base b* is denoted

 $\log_b x$  and is defined as the exponent y that makes the equation  $b^y = x$  true.

Symbols Suppose b > 0 and  $b \ne 1$ . For x > 0, there is a number y such that

$$\log_b x = y$$
 if and only if  $b^y = x$ .

Example

If 
$$\log_3 27 = y$$
, then  $3^y = 27$ .

# **Example 2** Exponential to Logarithmic Form

Write each equation in logarithmic form.

a. 
$$15^3 = 3375$$

$$\log_{15} 3375 = 3$$

**b.** 
$$4^{\frac{1}{2}} = 2$$

 $\log_4 2 = \frac{1}{2}$ 

#### Example 2 Write each equation in logarithmic form.

**3.** 
$$11^3 = 1331 \log_{11} 1331 = 3$$

4. 
$$16^{\frac{3}{4}} = 8 \log_{16} 8 = \frac{3}{4}$$



Words Let b and x be positive numbers,  $b \neq 1$ . The *logarithm of x with base b* is denoted

 $\log_b x$  and is defined as the exponent y that makes the equation  $b^y = x$  true.

Symbols Suppose b > 0 and  $b \ne 1$ . For x > 0, there is a number y such that

$$\log_b x = y$$
 if and only if  $b^y = x$ .

Example If  $\log_3 27 = y$ , then  $3^y = 27$ .

## **Example 3** Evaluate Logarithmic Expressions

Evaluate  $\log_{16} 4$ .



## Example 3

Evaluate each expression.

**5.** log<sub>13</sub> 169 **2** 

**6.**  $\log_2 \frac{1}{128}$ 

**7.** log<sub>6</sub> 1

**6.** 
$$\log_2 \frac{1}{128}$$
 **-7**

**Graphing Logarithmic Functions** The function  $y = \log_b x$ , where  $b \ne 1$ , is called a **logarithmic function**. The graph of  $f(x) = \log_b x$  represents a parent graph of the logarithmic functions.

# **KeyConcept** Parent Function of Logarithmic Functions

於

Parent function:  $f(x) = \log_b x$ 

Domain: all positive real numbers

Asymptote: f(x)-axis



Type of graph: continuous, one-to-one

Range: all real numbers

Intercept: (1, 0)



# **Example 4** Graph Logarithmic Functions



Graph each function.

 $a. f(x) = \log_5 x$ 

Step 1 Identify the base.

$$b = 5$$

Step 2 Determine points on the graph.

Because 5 > 1, use the points  $\left(\frac{1}{b}, -1\right)$ , (1, 0), and (b, 1).



Step 3 Plot the points and sketch the graph.

$$\left(\frac{1}{b'}, -1\right) \rightarrow \left(\frac{1}{5'}, -1\right)$$
 $(1, 0)$ 

$$(b, 1) \to (5, 1)$$

**b.** 
$$f(x) = \log_{\frac{1}{2}} x$$

The same techniques used to transform the graphs of other functions you have studied can be applied to the graphs of logarithmic functions.

### **KeyConcept** Transformations of Logarithmic Functions

$$f(x) = a \log_b (x - h) + k$$

h - Horizontal Translation

k - Vertical Translation

h units right if h is positive |h| units left if h is negative

k units up if k is positive |k| units down if k is negative

#### a - Orientation and Shape

If a < 0, the graph is reflected across the x-axis.

If |a| > 1, the graph is stretched vertically. If 0 < |a| < 1, the graph is compressed vertically.

### **Example 5** Graph Logarithmic Functions



Graph each function.

a. 
$$f(x) = 3 \log_{10} x + 1$$

This represents a transformation of the graph of  $f(x) = \log_{10} x$ .

- |a| = 3: The graph stretches vertically
- h = 0: There is no horizontal shift.
- k = 1: The graph is translated 1 unit up.

**b.** 
$$f(x) = \frac{1}{2} \log_{\frac{1}{4}} (x - 3)$$

This is a transformation of the graph of  $f(x) = \log_{\frac{1}{4}} x$ .

- $|a| = \frac{1}{2}$ : The graph is compressed vertically.
- h = 3: The graph is translated 3 units to the right.
- k = 0: There is no vertical shift.

# Examples 4–5 Graph each function. 8–11. See margin.

$$8. f(x) = \log_3 x$$

**10.** 
$$f(x) = 4 \log_4 (x - 6)$$

**9.** 
$$f(x) = \log_{\frac{1}{6}} x$$

**9.** 
$$f(x) = \log_{\frac{1}{6}} x$$
  
**11.**  $f(x) = 2 \log_{\frac{1}{10}} x - 5$ 



### **Additional Answers**









## Real-World Example 6 Find Inverses of Exponential Functions



**EARTHQUAKES** The Richter scale measures earthquake intensity. The increase in intensity between each number is 10 times. For example, an earthquake with a rating of 7 is 10 times more intense than one measuring 6. The intensity of an earthquake can be modeled by  $y = 10^{x-1}$ , where x is the Richter scale rating.

### **Real-WorldLink**

The largest recorded earthquake in the United States was a magnitude 9.2 that struck Prince William Sound, Alaska, on Good Friday, March 28, 1964.

Source: United States Geological Survey

| a. | <ol> <li>Use the information at the left to find the intensity of the strongest reco<br/>earthquake in the United States.</li> </ol> |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    | eartiquake in the Office States.                                                                                                     |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                                      |  |  |  |  |  |  |  |

**b.** Write an equation of the form  $y = \log_{10} x + c$  for the inverse of the function.

**Example 6** 

**12. SCIENCE** Use the information at the beginning of the lesson. The Palermo scale value of any object can be found using the equation  $PS = \log_{10} R$ , where R is the relative risk posed by the object. Write an equation in exponential form for the inverse of the function.



- **a.** Benito's camera is set up to take pictures in direct sunlight, but it is a cloudy day. If the amount of sunlight on a cloudy day is  $\frac{1}{4}$  as bright as direct sunlight, how many f-stop settings should he move to accommodate less light? **2**
- b. Graph the function.

use in less light where p is the fraction of sunlight.

**c.** Use the graph in part b to predict what fraction of daylight Benito is accommodating if he moves down 3 f-stop settings. Is he allowing more or less light into the camera?

| 49b. | 10 | n |   |    | $\perp$ |   |         |     |     |
|------|----|---|---|----|---------|---|---------|-----|-----|
|      | 9  |   |   |    |         |   |         |     |     |
|      | 6  | Ш |   |    |         |   | ┸       |     |     |
|      |    |   |   |    |         |   | $\perp$ |     |     |
|      |    | L |   |    |         |   |         |     |     |
|      |    |   |   |    |         |   |         |     |     |
|      | 0  |   | > | -3 | 4       | 5 | 6       | 7 8 | 3 9 |
|      |    |   |   |    |         | Т |         |     |     |

#### Example 1 Write each equation in exponential form.

**13.** 
$$\log_2 16 = 4$$
 **2**<sup>4</sup> = **16**

**14.** 
$$\log_7 343 = 3$$
 **73 = 343**

**13.** 
$$\log_2 16 = 4$$
 **2**<sup>4</sup> = **16 14.**  $\log_7 343 = 3$  **7**<sup>3</sup> = **343 15.**  $\log_9 \frac{1}{81} = -2$  **9**<sup>-2</sup> =  $\frac{1}{81}$ 

**16.** 
$$\log_3 \frac{1}{27} = -3$$
 **3**<sup>-3</sup> =  $\frac{1}{27}$  **17.**  $\log_{12} 144 = 2$  **12**<sup>2</sup> = **144 18.**  $\log_9 1 = 0$  **9**<sup>0</sup> = **1**

**17.** 
$$\log_{12} 144 = 2$$
 **12<sup>2</sup> = 144**

**18.** 
$$\log_9 1 = 0$$
 **90 = 1**

#### Example 2 Write each equation in logarithmic form.

19. 
$$9^{-1} = \frac{1}{9} \log_9 \frac{1}{9} = -1$$

19. 
$$9^{-1} = \frac{1}{9} \log_9 \frac{1}{9} = -1$$
 20.  $6^{-3} = \frac{1}{216} \log_6 \frac{1}{216} = -3$  21.  $2^8 = 256 \log_2 256 = 8$ 

22. 
$$4^6 = 4096 \log_4 4096 = 6$$
 23.  $27^{\frac{2}{3}} = 9 \log_{27} 9 = \frac{2}{3}$  24.  $25^{\frac{3}{2}} = 125 \log_{25} 125 = \frac{3}{2}$ 

**24.** 
$$25^{\frac{3}{2}} = 125 \log_{25} 125 = \frac{3}{2}$$

#### Example 3 Evaluate each expression.

**25.** 
$$\log_3 \frac{1}{9}$$
 -2

**25.** 
$$\log_3 \frac{1}{9}$$
 **26.**  $\log_4 \frac{1}{64}$  **27.**  $\log_8 512$  **3 28.**  $\log_6 216$  **3**

**29.** 
$$\log_{27} 3 \frac{1}{3}$$

**30.** 
$$\log_{32} 2 = \frac{1}{5}$$

31. log<sub>9</sub> 3 
$$\frac{1}{2}$$

**29.** 
$$\log_{27} 3 \frac{1}{3}$$
 **30.**  $\log_{32} 2 \frac{1}{5}$  **31.**  $\log_9 3 \frac{1}{2}$  **32.**  $\log_{121} 11 \frac{1}{2}$ 

**33** 
$$\log_{\frac{1}{5}} 3125$$
 **-5 34.**  $\log_{\frac{1}{5}} 512$  **-3 35.**  $\log_{\frac{1}{2}} \frac{1}{81}$  **4 36.**  $\log_{\frac{1}{5}} \frac{1}{216}$  **3**

**34.** 
$$\log_{\frac{1}{8}} 512$$
 —

**35.** 
$$\log_{\frac{1}{3}} \frac{1}{81}$$

**36.** 
$$\log_{\frac{1}{6}} \frac{1}{216}$$

# Examples 4–5 CSS PRECISION Graph each function. 37–48. See Chapter 7 Answer Appendix.

**37.** 
$$f(x) = \log_6 x$$

**38.** 
$$f(x) = \log_{\frac{1}{5}} x$$

**39.** 
$$f(x) = 4 \log_2 x + 6$$

**40.** 
$$f(x) = \log_{\frac{1}{9}} x$$

**41.** 
$$f(x) = \log_{10} x$$

**40.** 
$$f(x) = \log_{\frac{1}{9}} x$$
 **41.**  $f(x) = \log_{10} x$  **42.**  $f(x) = -3 \log_{\frac{1}{12}} x + 2$ 

**43.** 
$$f(x) = 6 \log_{\frac{1}{8}} (x + 2)$$

**44.** 
$$f(x) = -8 \log_3 (x - 4)$$

**43.** 
$$f(x) = 6 \log_{\frac{1}{8}}(x+2)$$
 **44.**  $f(x) = -8 \log_{3}(x-4)$  **45.**  $f(x) = \log_{\frac{1}{4}}(x+1) - 9$ 

**46.** 
$$f(x) = \log_5(x - 4) - 5$$

**47.** 
$$f(x) = \frac{1}{6} \log_8 (x - 3) + 4$$

**46.** 
$$f(x) = \log_5(x - 4) - 5$$
 **47.**  $f(x) = \frac{1}{6}\log_8(x - 3) + 4$  **48.**  $f(x) = -\frac{1}{3}\log_{\frac{1}{6}}(x + 2) - 5$ 

### Lesson 7-3

37.



38.



43.



44.



39.



40.



45.



46.





42.





48.

