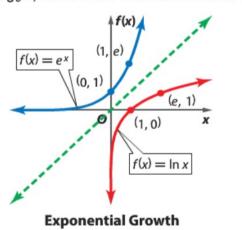
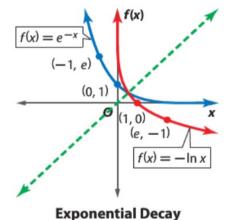
7-7 Base e and Natural Logarithms


Base *e* and Natural Logarithms Like π and $\sqrt{2}$, the number *e* is an irrational number. The value of *e* is 2.71828... . It is referred to as the **natural base**, *e*. An exponential function with base *e* is called a **natural base exponential function**.


KeyConcept Natural Base Functions

The function $f(x) = e^x$ is used to model continuous exponential growth.

The function $f(x) = e^{-x}$ is used to model continuous exponential decay.

The inverse of a natural base exponential function is called the natural logarithm. This logarithm can be written as $log_e x$, but is more often abbreviated as $log_e x$.

Write each exponential equation in logarithmic form.

a.
$$e^x = 8$$

$$e^x = 8 \rightarrow \log_e 8 = x$$

$$\ln 8 = x$$

b.
$$e^5 = x$$

$$e^5 = x \rightarrow \log_e x = 5$$

$$\ln x = 5$$

Example 2 Write Equivalent Expressions

Write each logarithmic equation in exponential form.

a.
$$\ln x \approx 0.7741$$

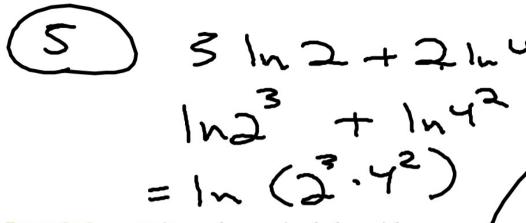
b.
$$\ln 10 = x$$

$$\ln x \approx 0.7741 \rightarrow \log_e x = 0.7741 \qquad \ln 10 = x \rightarrow \log_e 10 = x$$

$$x \approx e^{0.7741}$$

$$\ln 10 = x \quad \to \quad \log_e 10 = x$$

$$10 = e^{x}$$


Examples 1–2 Write an equivalent exponential or logarithmic function.

1.
$$e^x = 30 \ln 30 = x$$

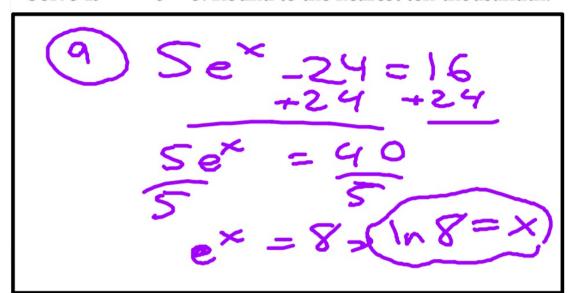
3.
$$e^3 = x \ln x = 3$$

2.
$$\ln x = 42$$
 $e^{42} = x$

4.
$$\ln 18 = x e^x = 18$$

Example 3 Write each as a single logarithm.

5.
$$3 \ln 2 + 2 \ln 4$$
 7 ln 2


7.
$$3 \ln 6 + 2 \ln 9 \ln 17496$$

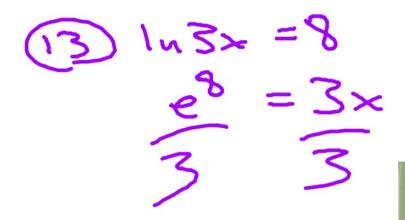
6.
$$5 \ln 3 - 2 \ln 9 \ln 3$$

8.
$$3 \ln 5 + 4 \ln x \ln 125x^4$$

Example 4 Solve Base *e* Equations

Solve $4e^{-2x} - 5 = 3$. Round to the nearest ten-thousandth.

Example 4 Solve each equation. Round to the nearest ten-thousandth.


9.
$$5e^x - 24 = 16$$
 2.0794

11.
$$3e^{-3x} + 4 = 6$$
 0.1352

10.
$$-3e^x + 9 = 4$$
 0.5108

12.
$$2e^{-x} - 3 = 8$$
 -1.7047

e⁸/3 993.6526623

x < 10.7183

Use a calculator.

Example 5 Solve each equation or inequality. Round to the nearest ten-thousandth.

13.
$$\ln 3x = 8$$
 993.6527

15.
$$\ln(x+5)^2 < 6$$

17.
$$e^x > 29$$

14.
$$-4 \ln 2x = -26$$

16.
$$\ln (x-2)^3 > 15$$

18.
$$5 + e^{-x} > 14$$

KeyConcept	Continuously	Compounded	Interest
-------------------	--------------	------------	----------

$$A = Pe^{rt}$$

where *A* is the amount in the account after *t* years, *P* is the principal amount invested, and *r* is the annual interest rate.

Real-World Example 6 Solve Base e Inequalities

FINANCIAL LITERACY When Angelina was born, her grandparents deposited \$3000 into a college savings account paying 4% interest compounded continuously.

a. Assuming there are no deposits or withdrawals from the account, what will the balance be after 10 years?

balance be after 10 years?					

KeyConce	t Continuously	Compounded	Interest
-----------------	----------------	------------	----------

$$A = Pe^{rt}$$

where *A* is the amount in the account after *t* years, *P* is the principal amount invested, and *r* is the annual interest rate.

Real-World Example 6 Solve Base e Inequalities

FINANCIAL LITERACY When Angelina was born, her grandparents deposited \$3000 into a college savings account paying 4% interest compounded continuously.

b. How long will it take the balance to reach at least \$10,000?

Key Concept	Continuously	Compounded	Interest
--------------------	--------------	------------	----------

$$A = Pe^{rt}$$

where *A* is the amount in the account after *t* years, *P* is the principal amount invested, and *r* is the annual interest rate.

Real-World Example 6 Solve Base e Inequalities

FINANCIAL LITERACY When Angelina was born, her grandparents deposited \$3000 into a college savings account paying 4% interest compounded continuously.

c. If her grandparents want Angelina to have \$10,000 after 18 years, how much would they need to invest?

Key Concept	Continuously	Compounded	Interest
--------------------	--------------	------------	----------

$$A = Pe^{rt}$$

where A is the amount in the account after t years, P is the principal amount invested, and r is the annual interest rate.

Example 6

19. SCIENCE A virus is spreading through a computer network according to the formula $v(t) = 30e^{0.1t}$, where v is the number of computers infected and t is the time in minutes. How long will it take the virus to infect 10,000 computers?

Practice and Problem Solving

Extra Practice is on page R7.

Examples 1–2 Write an equivalent exponential or logarithmic function. **22.** $0.25 = e^x$ **23.** $5.4 = e^x$

20.
$$e^{-x} = 8$$
 ln 8 = $-x$ 21. $e^{-5x} = 0.1$ **22.** ln $0.25 = x$ **23.** ln $5.4 = x$

23.
$$\ln 5.4 = x$$

24.
$$e^{x-3} = 2$$
 25. $\ln (x+4) = 36$ **26.** $e^{-2} = x^6$ **27.** $\ln e^x = 7$

25.
$$\ln (x + 4) = 3$$

1.
$$e^{x^2-3} = 2$$
 25. $\ln (x+4) = 36$ 26. $e^{-2} = x^6$ 27. $\ln e^x = 7$ $e^{36} = x+4$ $-2 = 6 \ln x$ $e^7 = e^x$

27.
$$\ln e^x = 7$$

Write each as a single logarithm. Example 3

28.
$$\ln 125 - 2 \ln 5$$
 in 5 29. $3 \ln 10 + 2 \ln 100$ **7 in 10 30.** $4 \ln \frac{1}{3} - 6 \ln \frac{1}{9}$ **-8 in $\frac{1}{3}$ 31.** $7 \ln \frac{1}{2} + 5 \ln 2$ **-2 in 2 32.** $8 \ln x - 4 \ln 5$ **in $\frac{x^8}{625}$ **33.** $3 \ln x^2 + 4 \ln 3$ **in $81x^6$****

(31)
$$7 \ln \frac{1}{2} + 5 \ln 2$$
 -2 In 2

32.
$$8 \ln x - 4 \ln 5 \ln \frac{x^8}{625}$$

33.
$$3 \ln x^2 + 4 \ln 3 \ln 81x^6$$

Example 4 Solve each equation. Round to the nearest ten-thousandth.

34.
$$6e^x - 3 = 35$$
 1.8458

35.
$$4e^x + 2 = 180$$
 3.7955

34.
$$6e^x - 3 = 35$$
 1.8458 35. $4e^x + 2 = 180$ **3.7955 36.** $3e^{2x} - 5 = -4$ **-0.5493**

37.
$$-2e^{3x} + 19 = 3$$
 0.6931

38.
$$6e^{4x} + 7 = 4$$
 no solution

37.
$$-2e^{3x} + 19 = 3$$
 0.6931 38. $6e^{4x} + 7 = 4$ **no solution 39.** $-4e^{-x} + 9 = 2$ **-0.5596**

Examples 5-6 40. CCSS SENSE-MAKING The value of a certain car depreciates according to $v(t) = 18500e^{-0.186t}$, where t is the number of years after the car is purchased new.

- a. What will the car be worth in 18 months? \$13,996
- b. When will the car be worth half of its original value? about 3.73 yr
- c. When will the car be worth less than \$1000? about 15.69 vr

45.
$$\{x \mid x < -239.8802 \text{ or } x > 239.8802\}$$

Solve each inequality. Round to the nearest ten-thousandth. 46. $\{x \mid 6 < x \le 26.0855\}$

41.
$$e^x \le 8.7 \{x \mid x \le 2.1633\}$$
 42. $e^x \ge 42.1 \{x \mid x \ge 3.7400\}$ **43.** $\ln (3x + 4)^3 > 10 \{x \mid x > 8.0105\}$

44.
$$4 \ln x^2 < 72$$
 45. $\ln (8x^4) > 24$ $\{x \mid -8103.0839 < x < 8103.0839, x \neq 0\}$

46.
$$-2 [\ln (x-6)^{-1}] \le 6$$

connectED.mcgraw-hill.com 505