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7.4 Lengths of Curves @ = -_\_f

As the title implies, we can lengths of curves using elements of calc
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Figure 7.35 The graph of f, approximated
by line segments.

As each piece gets really small, it turns into integration!
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DEFINITION Arc Length: Length of a Smooth Curve

If a smooth curve begins at (a, ¢) and ends at (b, d), a < b, ¢ < d, then the length
(arc length) of the curve is "
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if y is a smooth function of x on [a, b];

if x is a smooth function of y on [c, d].




EXAMPLE 1 The Length of a Sine Wave

What is the length of the curve y =sinx from x =0 to x = 27?
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What we'll do is break the curve apart into small segments, then

add the segments up. I
J

2 V1 + (sin’ ¢;)? Ax,.

which s a Riemann sum.

Now we take the limit as the norms of the subdivisions go to zero and find that the
length of one wave of the sine function is

2 29
f V1 + (sin’ x)2 dx = f V1 + cos?2x dx=7.64. Using NINT
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In Exercises 1-10, S .q'l-(ﬁ jl'

L R

(a) set up an integral for the length of the curve;
(b) graph the curve to see what it looks like:

(c) use NINT to find the length of the curve.
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\Owevﬁulv—-tanx —7/3<x<0Y9 )
bO“' 3. x=siny, D=y=aw
4.x=V1-y2, —-12=y=1/2
5.y2+2y=2x+1, from (—1,—1) to (7,3)
6. y=sinx —xcosx, 0=x=7 C]-—)Y"\fp\?‘\s
7.}»:foxtantdt. 0<x=<mw/6 ‘ FMV\OY"O\,\
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9. y=secx, —w/3=x=m/3 ¥ Tons InsTrusen ( 2“
10. y=(e*+e*)/2, -3=x=3

#7 & 8- what happens when you
derive an antiderivative...?

— ngm



In Exercises 1-10.

i = W
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(a) set up an integral for the length of the curve;

N/
(b) graph the curve to see what it looks like; <
(c) use NINT to find the length of the curve. A
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7. y= _’-(';l;lll tdt, 0=x=m/6
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1.y = fo‘ tantdt, 0=x=m/6
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EXAMPLE 2 Applying the Definition

Find the exact length of the curve

4V?2
y = \‘;/_-"3/2 T l fOl' 0 == l
SOLUTION
dy _ W2 .3-‘_1/2 = 2V2 x172,
dx 3 2

which is continuous on [0, 1]. Therefore,
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Now try Exercise 11.




In Exercises 11-18, find the exact length of the curve analytically by
antidifferentiation. You will need to simplify the integrand
algebraically before finding an antiderivative.

11. y = (1/3)(x2 4+ 2)32 from x=0 to x=3 12

12. y=x¥2 from x=0 to x=4 (80V10 - .\;_“@ rL
1

13. x = (y¥/3) + 1/(4y) from y=1 to y=3 / A\
[Hint: 1 + (dx/dy)? is a perfect square.] 53/6 \ o i X

14. x = (y¥/4) + 1/(8y?) from y=1 to y=2
[Hint: | + (dx/dy)? is a perfect square.] 123/32 J

15. x = (y%/6) + 1/(2y) from y=1 to y=2
[Hint: 1 + (dx/dy)?* is a perfect square.] 17/12

16. y=(x¥/3) +x2+x+1/(4x+4), 0=x=2 536

17. x = fd“ Vsect—1dt, —w/A<y=<w/4 2

18. b A ,,-_‘n, mdf —2=x= -1 7\ _3'1



In Exercises 11-18, find the exact length of the curve analytically by

antidifferentiation. You will need to simplify the integrand

algebraically before finding an antiderivative.
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y=(1/3)(x2+2)32 from x=0to x=3 12

y=x¥ from x=0 to x=4 (80V10 — 8)/27

x=(y¥/3)+ 1/(4y) from y=1 to y=3
[Hint: 1 + (dx/dy)? is a perfect square.] 53/6

x=(y¥4) + 1/(8y%) from y=1 to y=2
[Hint: 1 + (dx/dy)? is a perfect square.] 123/32

x=(y¥6)+1/(2y) from y=1to y=2
[Hint: | + (dx/dy)? is a perfect square.] 17/12
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