New Vocabulary

- polynomial
- binomial
- trinomial
- degree of a monomial
- degree of a polynomial
- standard form of a polynomial
- leading coefficient

Polynomials in Standard Form A **polynomial** is a monomial or the sum of monomials, each called a *term* of the polynomial. Some polynomials have special names. A **binomial** is the sum of *two* monomials, and a **trinomial** is the sum of *three* monomials.

Monomial	Binomial	Trinomial
5x	$2x^2 + 7$	$x^3 - 10x + 1$

WAIT. Remember what I said about monomials back in 7-1?

Multiply Monomials A monomial is a number, a variable, or the product of a number and one or more variables with nonnegative integer exponents. It has only one term. In the formula to calculate the horsepower of a car, the term $w\left(\frac{v}{234}\right)^3$ is a monomial.

p.391

An expression that involves division by a variable, like $\frac{ab}{c}$, is not a monomial.

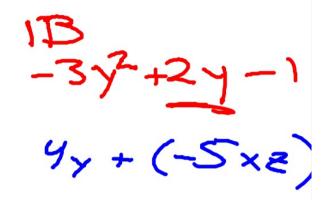
obc

This will come up in today's work. Be careful!

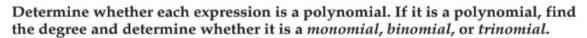
The **degree of a monomial** is the sum of the exponents of all its variables. A nonzero constant term has degree 0, and zero has no degree.

The degree of a polynomial is the greatest degree of any term in the polynomial. You can find the degree of a polynomial by finding the degree of each term. Polynomials are named based on their degree.

Degree	Name	
0	constant	
1	linear	
2	quadratic	
3	cubic	
4	quartic	
5	quintic	
6 or more	6th degree, 7th degree, and so on	



Example 1 Identify Polynomials



Expression	is it a polynomial?	Degree	Monomiai, binomiai, or trinomiai?
a. 4y – 5xz	Yes; $4y - 5xz$ is the sum of $4y$ and $-5xz$.	2	binomial
b. -6.5	Yes; -6.5 is a real number.	0	monomial
c. $7a^{-3} + 9b$	No; $7a^{-3} = \frac{7}{a^3}$, which is not a monomial.		
d. $6x^3 + 4x + x + 3$	Yes; $6x^3 + 4x + x + 3 = 6x^3 + 5x + 3$, the sum of three monomials.	3	trinomial

1D. No; $10x^{-4} = \frac{10}{x^4}$, which is not a monomial, and $8x^a$ has a variable exponent.

1B. $-3y^2 - 2y + 4y - 1$ yes; **2**; trinomial

main concern;

is the exponent a non-negative integer?

GuidedPractice

1A.
$$x$$
 yes; 1; monomial

10.
$$5rx + 7tuv$$
 yes; 3; binomial

1D.
$$10x^{-4} - 8x^a$$

Example 1 Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial.

1.
$$7ab + 6b^2 - 2a^3$$
 yes; 3; trinomial

3.
$$3x^2$$
 yes; 2; monomial

5.
$$5m^2p^3 + 6$$
 yes; 5; binomial

2.
$$2y - 5 + 3y^2$$

4.
$$\frac{4m}{3p}$$
 No; a monomial cannot have a variable in the denominator.

4.
$$\frac{4m}{3p}$$
 No; a monomial cannot have a variable in the denominator.
6. $5q^{-4} + 6q$ No; $5q^{-4} = \frac{5}{q^4}$, and a monomial cannot have a variable in the denominator.

Practice and Problem Solving

Extra Practice is on page R8.

Example 1 Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial.

20. No; a monomial **20.** $\frac{5y^3}{x^2} + 4x$ cannot have a variable in the denominator.

20.
$$\frac{3g}{x^2} + 4x$$
 22. $c^4 - 2c^2 + 1$ **yes; 4; trinomial**

24.
$$a - a^2$$
 yes; **2**; binomial

23.
$$d + 3d^c$$
 No; the exponent is a variable.

25.
$$5n^3 + nq^3$$
 yes; 4; binomial

The terms of a polynomial can be written in any order. However, polynomials in one variable are usually written in standard form. The **standard form of a polynomial** has the terms in order from greatest to least degree. In this form, the coefficient of the first term is called the **leading coefficient**.

Standard form:
$$4x^3 - 5x^2 + 2x + 7$$

Example 2 Standard Form of a Polynomial

Write each polynomial in standard form. Identify the leading coefficient.

a.
$$3x^2 + 4x^5 - 7x$$

Find the degree of each term.

Degree: 2 5 1 Polynomial: $3x^2 + 4x^5 - 7x$

The greatest degree is 5. Therefore, the polynomial can be rewritten as $4x^5 + 3x^2 - 7x$, with a leading coefficient of 4.

b.
$$5y - 9 - 2y^4 - 6y^3$$

Find the degree of each term.

Degree: 1 0 4 3 \uparrow \uparrow \uparrow \uparrow Polynomial: $5y - 9 - 2y^4 - 6y^3$

The greatest degree is 4. Therefore, the polynomial can be rewritten as $-2y^4 - 6y^3 + 5y - 9$, with a leading coefficient of -2.

GuidedPractice

2A.
$$8 - 2x^2 + 4x^4 - 3x$$

2B.
$$y + 5y^3 - 2y^2 - 7y^6 + 10$$

leading coefficient

greatest degree

Standard form:

$$4x^3 - 5x^2 + 2x + 7$$

Example 2 Write each polynomial in standard form. Identify the leading coefficient.

7.
$$2x^5 - 12 + 3x$$
 $2x^5 + 3x - 12$; 2 8. $-4d^4 + 1 - d^2$

8.
$$-4d^4 + 1 - d^2$$

9.
$$4z - 2z^2 - 5z^4 - 5z^4 - 2z^2 + 4z$$
; -5 **10.** $2a + 4a^3 - 5a^2 - 1$

10.
$$2a + 4a^3 - 5a^2 - 1$$

-524-222+42

Example 2 Write each polynomial in standard form. Identify the leading coefficient.

26.
$$5x^2 - 2 + 3x$$
 $5x^2 + 3x - 2$; **5 27.** $8y + 7y^3$ $7y^3 + 8y$; **7**

27.
$$8y + 7y^3 7y^3 + 8y; 7$$

28.
$$4 - 3c - 5c^2 - 5c^2 - 3c + 4; -5$$

28.
$$4 - 3c - 5c^2 - 5c^2 - 3c + 4$$
; -5 **29.** $-y^3 + 3y - 3y^2 + 2 - y^3 - 3y^2 + 3y + 2$; -1

+10b; -1

30.
$$11t + 2t^2 - 3 + t^5$$
 $t^5 + 2t^2 + 11t - 3$; **1 31.** $2 + r - r^3 - r^3 + r + 2$; -1

32.
$$\frac{1}{2}x - 3x^4 + 7$$
 $-3x^4 + \frac{1}{2}x + 7$; -3 **33.** $-9b^2 + 10$

33.
$$-9b^2 + 10$$

Add and Subtract Polynomials Adding polynomials involves adding like terms. You can group like terms by using a horizontal or vertical format.

Example 3 Add Polynomials

Find each sum.

a.
$$(2x^2 + 5x - 7) + (3 - 4x^2 + 6x)$$

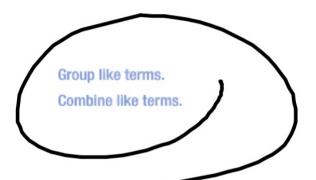
Horizontal Method

Group and combine like terms.

$$(2x^{2} + 5x - 7) + (3 - 4x^{2} + 6x)$$

$$= [2x^{2} + (-4x^{2})] + [5x + 6x] + [-7 + 3]$$

$$= -2x^{2} + 11x - 4$$



b. $(3y + y^3 - 5) + (4y^2 - 4y + 2y^3 + 8)$

Vertical Method

Align like terms in columns and combine.

$$y^3 + 0y^2 + 3y - 5$$
 Insert a placeholder to help align the terms.
 $(+) 2y^3 + 4y^2 - 4y + 8$ Align and combine like terms.
 $3y^3 + 4y^2 - y + 3$

GuidedPractice

3A.
$$(5x^2 - 3x + 4) + (6x - 3x^2 - 3)$$
 2x² + 3x + 1

3B.
$$(y^4 - 3y + 7) + (2y^3 + 2y - 2y^4 - 11)$$

Example 4 Subtract Polynomials

Find each difference.

a.
$$(3-2x+2x^2)-(4x-5+3x^2)$$

Horizontal Method

Subtract $4x - 5 + 3x^2$ by adding its additive inverse.

$$(3 - 2x + 2x^{2}) - (4x - 5 + 3x^{2})$$

$$= (3 - 2x + 2x^{2}) + (-4x + 5 - 3x^{2})$$

$$= [2x^{2} + (-3x^{2})] + [(-2x) + (-4x)] + [3 + 5]$$

$$= -x^{2} - 6x + 8$$

Group like terms.

Combine like terms.

b.
$$(7p + 4p^3 - 8) - (3p^2 + 2 - 9p)$$

Vertical Method

Align like terms in columns and subtract by adding the additive inverse.

Add the opposite.

$$4p^3 + 0p^2 + 7p - 8$$
(-)
$$3p^2 - 9p + 2$$

$$4p^3 + 0p^2 + 7p - 8$$

$$\frac{(+) - 3p^2 + 9p - 2}{4p^3 - 3p^2 + 16p - 10}$$

GuidedPractice

4A.
$$(4x^3 - 3x^2 + 6x - 4) - (-2x^3 + x^2 - 2)$$

4B.
$$(8y - 10 + 5y^2) - (7 - y^3 + 12y)$$

You're basically doing the same thing as the last example, just make sure to the additive inverse of $4x-5+3x^2$ is $-4x+5-3x^2$. distribute the negative!

Examples 3–4 Find each sum or difference. 13.
$$-a^2 + 6a - 3$$
 15. $-8z^3 - 3z^2 - 2z + 13$

11.
$$(6x^3 - 4) + (-2x^3 + 9)$$
 4x³ + 5 12. $(g^3 - 2g^2 + 5g + 6) - (g^2 + 2g)$

12.
$$(g^3 - 2g^2 + 5g + 6) - (g^2 + 2g)$$

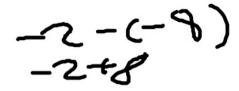
13
$$(4 + 2a^2 - 2a) - (3a^2 - 8a + 7)$$
 14. $(8y - 4y^2) + (3y - 9y^2)$

14.
$$(8y - 4y^2) + (3y - 9y^2)$$

15.
$$(-4z^3 - 2z + 8) - (4z^3 + 3z^2 - 5)$$
 16. $(-3d^2 - 8 + 2d) + (4d - 12 + d^2)$

16.
$$(-3d^2 - 8 + 2d) + (4d - 12 + d^2)$$

17.
$$(y+5)+(2y+4y^2-2)$$
 4y² + 3y + 3 18. $(3n^3-5n+n^2)-(-8n^2+3n^3)$



Examples 3-4 Find each sum or difference.

34.
$$(2c^2 + 6c + 4) + (5c^2 - 7)$$
 7 $c^2 + 6c - 3$ **35** $(2x + 3x^2) - (7 - 8x^2)$ **11** $x^2 + 2x - 7$

36.
$$(3c^3-c+11)-(c^2+2c+8)$$

37.
$$(z^2 + z) + (z^2 - 11)$$
 2 $z^2 + z - 11$

$$3c^3 - c^2 - 3c + 3$$

36.
$$(3c^3 - c + 11) - (c^2 + 2c + 8)$$
 37. $(z^2 + z) + (z^2 - 11)$ **2 $z^2 + z - 11$ 38.** $(2x - 2y + 1) - (3y + 4x) - 2x - 5y + 1$ **39.** $(4a - 5b^2 + 3) + (6 - 2a + 3b^2)$ **-2 $b^2 + 2a + 9$**

40.
$$(x^2y - 3x^2 + y) + (3y - 2x^2y)$$

41.
$$(-8xy + 3x^2 - 5y) + (4x^2 - 2y + 6xy) 7x^2 - 2xy - 7y$$

40.
$$(x^2y - 3x^2 + y) + (3y - 2x^2y)$$
 41. $(-8xy + 3x^2 - 5y) + (4x^2 - 2y + 6xy)$ **7** $x^2 - 2xy - 7y$ **42.** $(5n - 2p^2 + 2np) - (4p^2 + 4n)$ **43.** $(4rxt - 8r^2x + x^2) - (6rx^2 + 5rxt - 2x^2)$ **3** $x^2 - rxt - 8r^2x - 6rx^2$

19. CSS SENSE-MAKING The total number of students *T* who traveled for spring break consists of two groups: students who flew to their destinations *F* and students who drove to their destination *D*. The number (in thousands) of students who flew and the total number of students who flew or drove can be modeled by the following equations, where *n* is the number of years since 1995.

T = 14n + 21 F = 8n + 7

- a. Write an equation that models the number of students who drove to their destination for this time period.
- b. Predict the number of students who will drive to their destination in 2012.
- c. How many students will drive or fly to their destination in 2015?