

way to a mical fanction and way 7 of

KeyConcept Parent Function of Reciprocal Functions

 $f(x) = \frac{1}{x}$ Parent function:

Type of graph: hyperbola

Domain and range: all nonzero real numbers

Asymptotes: x = 0 and f(x) = 0

Intercepts: none

Not defined: x = 0

The domain of a reciprocal function is limited to values for which the function is defined.

Functions:

 $f(x) = \frac{-3}{x+2}$ $g(x) = \frac{4}{x-5}$ $h(x) = \frac{3}{x}$

$$h(x) = \frac{3}{x}$$

Not defined at: x = -2 x = 5

$$x = 0$$

Example 1 Limitations on Domain

Determine the value of *x* for which $f(x) = \frac{3}{2x+5}$ is not defined.

Find the value for which the denominator of the expression equals 0.

Find the value for which the denominator of the expression equals 0.
$$\frac{3}{2x+5} \rightarrow 2x+5=0$$
$$x=-\frac{5}{2}$$
 The function is undefined for $x=-\frac{5}{2}$.

Example 2 Determine Properties of Reciprocal Functions

Identify the asymptotes, domain, and range of each function.

a.

Identify x-values for which f(x) is undefined.

$$x - 3 = 0$$
$$x = 3$$

f(x) is not defined when x = 3. So there is an asymptote at x = 3.

From x = 3, as x-values decrease, f(x)-values approach 0, and as x-values increase, f(x)-values approach 0. So there is an asymptote at f(x) = 0.

The domain is all real numbers not equal to 3 and the range is all real numbers not equal to 0.

Example 2 Determine Properties of Reciprocal Functions

Identify the asymptotes, domain, and range of each function.

Identify x-values for which g(x) is undefined.

$$x + 2 = 0$$
$$x = -2$$

g(x) is not defined when x = -2. So there is an asymptote at x = -2.

From x = -2, as x-values decrease, g(x)-values approach -1, and as x-values increase, g(x)-values approach -1. So there is an asymptote at g(x) = -1.

The domain is all not equal to -1. v = 3 f(v) = -2.

Check Your Understanding

Examples 1-2 Identify the asymptotes, domain, and range of each function.

2.

x = -2, f(x) = 1;

$$D = \{x \mid x \neq -2\};$$

D =
$$\{x \mid x \neq -2\};$$

R = $\{f(x) \mid f(x) \neq 1\}$

x = 1, f(x) = 0;

 $D = \{x \mid x \neq 1\};$

KeyConcept Transformations of Reciprocal Functions

$$f(x) = \frac{a}{x - h} + k$$

h - Horizontal Translation

k - Vertical Translation

h units right if h is positive

k units up if k is positive

| h | units left if h is negative

| k | units down if k is negative

The *vertical* asymptote is at x = h.

The *horizontal* asymptote is at f(x) = k.

a - Orientation and Shape

If a < 0, the graph is reflected across the x-axis.

If |a| > 1, the graph is stretched vertically. If 0 < |a| < 1, the graph is compressed vertically.

Example 3 Graph Transformations

Graph each function. State the domain and range.

a.
$$f(x) = \frac{2}{x-4} + 2$$

y # 2

This represents a transformation of the graph of $f(x) = \frac{1}{x}$.

- a = 2: The graph is stretched vertically.
- h = 4: The graph is translated 4 units right. There is an asymptote at x = 4.
- k = 2: The graph is translated 2 units up. There is an asymptote at f(x) = 2.

Domain: $\{x \mid x \neq 4\}$ Range: $\{f(x) \mid f(x) \neq 2\}$

KeyConcept Transformations of Reciprocal Functions

$$f(x) = \frac{a}{x - h} + k$$

h - Horizontal Translation

k - Vertical Translation

h units right if h is positive

k units up if k is positive

| h | units left if h is negative

| k | units down if k is negative

The *vertical* asymptote is at x = h.

The *horizontal* asymptote is at f(x) = k.

a - Orientation and Shape

If a < 0, the graph is reflected across the x-axis.

If |a| > 1, the graph is stretched vertically. If 0 < |a| < 1, the graph is compressed vertically.

Example 3 Graph Transformations

Graph each function. State the domain and range.

b.
$$f(x) = \frac{-3}{x+1} - 4$$

Additional Answers

$$D = \{x \mid x \neq 0\}; R = \{f(x) \mid f(x) \neq 0\}$$

$$D = \{x \mid x \neq -3\}; R = \{f(x) \mid f(x) \neq 0\}$$

$$D = \{x \mid x \neq 2\};$$

 $R = \{f(x) \mid f(x) \neq 4\}$

KeyConcept Transformations of Reciprocal Functions

$$f(x) = \frac{a}{x - h} + k$$

h - Horizontal Translation

h units right if h is positive

| h | units left if h is negative

The *vertical* asymptote is at x = h.

k - Vertical Translation

k units up if k is positive

| k | units down if k is negative

The *horizontal* asymptote is at f(x) = k.

a - Orientation and Shape

If a < 0, the graph is reflected across the x-axis.

If |a| > 1, the graph is stretched vertically. If 0 < |a| < 1, the graph is compressed vertically.

Graph each function. State the domain and range. 3-5. See margin.

3.
$$f(x) = \frac{5}{x}$$

4.
$$f(x) = \frac{2}{x+3}$$

5.
$$f(x) = \frac{-1}{x-2} + 4$$

Real-World Example 4 Write Equations	
TRAVEL An airline has a daily nonstop flight between Los Angeles, California, a Sydney, Australia. A one-way trip is about 7500 miles.	nd
a. Write an equation to represent the travel time from Los Angeles to Sydney as a function of flight speed. Then graph the equation.	•
b. Explain any limitations to the range or domain in this situation.	

Example 4	 6. SENSE-MAKING A group of friends plans to get their youth group leader a gift certificate for a day at a spa. The certificate costs \$150. a. If c represents the cost for each friend and f represents the number of friends, write an equation to represent the cost to each friend as a function of how many friends give. b. Graph the function. See margin. c. Explain any limitations to the range or domain in this situation.
	C. Explain any limitations to the range of domain in this steadow.

Examples 1-2 Identify the asymptotes, domain, and range of each function.

7.

8.

x = 0, f(x) = -3;

$$D = \{x | x \neq 0\};$$

$$R = \{f(x) \mid f(x) \neq -3\}$$

10.

x = -4, f(x) = 0;

 $D = \{x | x \neq -4\};$

x = 1, f(x) = 5;

$$D = \{x | x \neq 1\};$$

$$R = \{f(x) | f(x) \neq 5\}$$

x = -6, f(x) = -2; $D = \{x | x \neq -6\}$; $R = \{f(x) \mid f(x) \neq -2\}$

$$R = \{f(x) | f(x) \neq -2\}$$

Graph each function. State the domain and range. 11-22. See Chapter 8 Answer Appendix. Example 3

11.
$$f(x) = \frac{3}{x}$$

12.
$$f(x) = \frac{-4}{x+2}$$
 13. $f(x) = \frac{2}{x-6}$

13.
$$f(x) = \frac{2}{x-6}$$

14.
$$f(x) = \frac{6}{x} - 5$$

15
$$f(x) = \frac{2}{x} + 3$$
 16. $f(x) = \frac{8}{x}$

16.
$$f(x) = \frac{8}{x}$$

17.
$$f(x) = \frac{-2}{x-3}$$

18.
$$f(x) = \frac{3}{x-7} - 8$$

17.
$$f(x) = \frac{-2}{x-5}$$
 18. $f(x) = \frac{3}{x-7} - 8$ **19.** $f(x) = \frac{9}{x+3} + 6$

20.
$$f(x) = \frac{8}{x+3}$$

21.
$$f(x) = \frac{-6}{x+4} - 2$$

20.
$$f(x) = \frac{8}{x+3}$$
 21. $f(x) = \frac{-6}{x+4} - 2$ **22.** $f(x) = \frac{-5}{x-2} + 2$

Example 4 23. CYCLING Marina's New Year's resolution is to ride her bike 5000 miles.

- a. If m represents the mileage Marina rides each day and d represents the number of days, write an equation to represent the mileage each day as a function of the number of days that she rides. $m = \frac{5000}{}$
- b. Graph the function. See Chapter 8 Answer Appendix.
- c. If she rides her bike every day of the year, how many miles should she ride each day to meet her goal? 13.7 mi
- 24. CCSS MODELING Parker has 200 grams of an unknown liquid. Knowing the density will help him discover what type of liquid this is.
 - a. Density of a liquid is found by dividing the mass by the volume. Write an equation to represent the density of this unknown as a function of volume. $d = \frac{200}{100}$
 - b. Graph the function. See Chapter 8 Answer Appendix.
 - c. From the graph, identify the asymptotes, domain, and range of the function. $v = 0, d = 0; D = \{v | v \neq 0\}; R = \{d | d \neq 0\}$

Lesson 8-3

11.

$$D = \{x \mid x \neq 0\};$$

$$R = \{f(x) \mid f(x) \neq 0\}$$

$$D = \{x \mid x \neq 6\};$$

$$R = \{f(x) \mid f(x) \neq 0\}$$

15.

$$D = \{x \mid x \neq 0\};$$

$$R = \{f(x) \mid f(x) \neq 3\}$$

12.

$$D = \{x \mid x \neq -2\};$$

$$R = \{f(x) \mid f(x) \neq 0\}$$

14.

$$D = \{x \mid x \neq 0\};$$

$$R = \{f(x) \mid f(x) \neq -5\}$$

16.

$$D = \{x \mid x \neq 0\};$$

$$R = \{f(x) \mid f(x) \neq 0\}$$

17.

D =
$$\{x \mid x \neq 5\};$$

R = $\{f(x) \mid f(x) \neq 0\}$

18.

$$D = \{x \mid x \neq 7\};$$

$$R = \{f(x) \mid f(x) \neq -8\}$$

19.

$$D = \{x \mid x \neq -3\};$$

$$R = \{f(x) \mid f(x) \neq 6\}$$

20.

$$D = \{x \mid x \neq -3\};$$

$$R = \{f(x) \mid f(x) \neq 0\}$$

$$D = \{x \mid x \neq -4\}; R = \{f(x) \mid f(x) \neq -2\}$$

22.

$$D = \{x \mid x \neq 2\}; R = \{f(x) \mid f(x) \neq 2\}$$