2:7 1:14? prime...

Warm up!

Remember, x-intercepts are the solutions!

Examples 1–3 Solve each equation by graphing.

10.
$$x^2 + 7x + 14 = 0$$

13.
$$x^2 - 5x + 12 = 0$$

Transformations of Quadratic Functions

New Vocabulary

Let's explore quadratics with

· transformation ______ revm

- translation er move "
- dilation ..
- reflection

-specific ways to promsform...

ConceptSummary Transformations of Quadratic Functions

Warm up! Write this down! $f(x) = a(x - h)^2 + k$

h, Horizontal Translation
h units to the right if h is positive
| h | units to the left if h is negative

a, Reflection If a>0, the graph opens up. If a<0, the graph opens down.

k, Vertical Translation k units up if k is positive |k| units down if k is negative

a, Dilation If |a| > 1, the graph is stretched vertically. If 0 < |a| < 1, the graph is compressed vertically.

B268

Examples 1-5, 7

Describe how the graph of each function is related to the graph of $f(x) = x^2$. 1–6. See margin.

1.
$$g(x) = x^2 - 11$$

1.
$$g(x) = x^2 - 11$$
 2. $h(x) = \frac{1}{2}(x - 2)^2$ **3.** $h(x) = -x^2 + 8$

3.
$$h(x) = -x^2 + 8$$

4.
$$g(x) = x^2 + 6$$

4.
$$g(x) = x^2 + 6$$
 5. $g(x) = -4(x+3)^2$ **6.** $h(x) = -x^2 - 2$

6.
$$h(x) = -x^2 - 2$$

Example 6

7. MULTIPLE CHOICE Which is an equation for the function shown in the graph? C

A
$$g(x) = \frac{1}{5}x^2 + 2$$

A
$$g(x) = \frac{1}{5}x^2 + 2$$
 C $g(x) = \frac{1}{5}x^2 - 2$ **B** $g(x) = -5x^2 - 2$ **D** $g(x) = -\frac{1}{5}x^2 - 2$

B
$$g(x) = -5x^2 - 2$$

D
$$g(x) = -\frac{1}{5}x^2 - 2$$

3

Additional Answers

- translated down 11 units
- 2. translated right 2 units and compressed vertically
- **3.** reflected across the *x*-axis. translated up 8 units
- 4. translated up 6 units
- **5.** reflected across the *x*-axis, translated left 3 units and stretched vertically
- **6.** reflected across the *x*-axis, translated down 2 units

Examples 1-5. 7

Describe how the graph of each function is related to the graph of $f(x) = x^2$. 8–17. See margin.

8.
$$g(x) = -10 + x^2$$

$$h(x) = -7 - x^2$$

9
$$h(x) = -7 - x^2$$
 10. $g(x) = 2(x - 3)^2 + 8$

11.
$$h(x) = 6 + \frac{2}{3}x^{\frac{6}{7}}$$
 12. $g(x) = -5 - \frac{4}{3}x^2$ **13.** $h(x) = 3 + \frac{5}{2}x^2$

12.
$$g(x) = -5 - \frac{4}{3}x^2$$

13.
$$h(x) = 3 + \frac{5}{2}x^2$$

14.
$$g(x) = 0.25x^2 - 1.1$$

16.
$$g(x) = \frac{3}{4}x^2 + \frac{5}{6}$$

15.
$$h(x) = 1.35(x+1)^2 + 2.6$$

17.
$$h(x) = 1.01x^2 - 6.5$$

(1)
$$h(x) = \frac{3}{3}x^{2} + 6$$

(8) $q(x) = x^{2} - 10$
(9) $h(x) = -x^{2} - 7$
(10) $q(x) = -x^{2} - 7$

- 8. translated down 10 units
- **9.** reflected across the x-axis, translated down 7 units

- 10. translated right 3 units and up 8 units and stretched vertically
- 11. compressed vertically, translated up 6 units
- **12.** reflected across the *x*-axis, stretched vertically, translated down 5 units
- 13. stretched vertically, translated up 3 units
- **14.** compressed vertically, translated down 1.1 unit
- **15.** translated left 1 unit and up 2.6 units and stretched vertically
- 16. compressed vertically, translated up $\frac{5}{6}$ unit
- 17. stretched vertically, translated down 6.5 units

Example 6 Match each equation to its graph.

 \mathbf{D}

E

18.
$$y = \frac{1}{3}x^2 - 4$$
 C

21.
$$y = -3x^2 - 2$$
 F

18.
$$y = \frac{1}{3}x^2 - 4$$
 C 19. $y = \frac{1}{3}(x+4)^2 - 4$ **A 20.** $y = \frac{1}{3}x^2 + 4$ **B**

22.
$$y = -x^2 + 2$$

20.
$$y = \frac{1}{3}x^2 + 4$$
 B

23.
$$y = (2x + 6)^2 + 2$$
 E