

Examples

Write each expression using exponents.

1.
$$(-2) \cdot (-2) \cdot (-2) \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

The base -2 is a factor 3 times, and the base 3 is a factor 4 times.

$$(-2) \cdot (-2) \cdot (-2) \cdot 3 \cdot 3 \cdot 3 \cdot 3 = (-2)^3 \cdot 3^4$$

2. a.b.b.a.b

Use the properties of operations to rewrite and group like bases together. The base a is a factor 2 times, and the base b is a factor 3 times.

$$a \cdot b \cdot b \cdot a \cdot b = a \cdot a \cdot b \cdot b \cdot b$$

= $a^2 \cdot b^3$

Got it? Do these problems to find out.

a.
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$
 b. $4 \cdot 4 \cdot 4 \cdot 5 \cdot 5$ **c.** $m \cdot m \cdot n \cdot n \cdot m$

16 Chapter 1 Real Numbers

b. $\frac{4^3 \cdot 5^2}{}$

 $c. m^3 \cdot n^2$

Glossary

Index

Answers: On Off

Remember that to evaluate

an expression means to find

- 100%

3. Evaluate $\left(-\frac{2}{3}\right)^4$.

$$\left(-\frac{2}{3}\right)^4 = \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right)$$
$$= \frac{16}{81}$$

Write the power as a product.

Multiply.

its value.

Show your

a. 256

Got it? Do these problems to find out.

d.
$$4^4$$

e.
$$(-2)^6$$

f.
$$\left(\frac{1}{5}\right)^3$$

f. 125

Example

4. The deck of a skateboard has an area of about 2⁵ • 7 square inches. What is the area of the skateboard deck?

$$2^5 \cdot 7 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 7$$
 Write the power as a product.
 $= (2 \cdot 2 \cdot 2 \cdot 2 \cdot 2) \cdot 7$ Associative Property
 $= 32 \cdot 7$ or 224 Multiply.

The area of the skateboard deck is about 224 square inches.

Got it? Do this problem to find out.

g. A school basketball court has an area of 23 · 3 · 52 · 7 square feet. What is the area of

g. 4,200 ft²

h. 17

Got it? Do these problems to find out.

i. 125

Evaluate each expression if c = -4 and d = 9.

h.
$$c^3 + d^2$$

i.
$$(c + d)^3$$

h.
$$c^3 + d^2$$
 i. $(c + d)^3$ **j.** $d^3 - (c^2 - 2)$

j. 715

Guided Practice

Write each expression using exponents. (Examples 1 and 2)

1.
$$(-11)(-11)(-11) = \frac{(-11)^3}{(-11)^3}$$

2.
$$2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 = \frac{2^3 \cdot 3^3}{2^3 \cdot 3^3}$$

Evaluate each expression. (Example 3)

4.
$$2^6 = 64$$

5.
$$(-4)^4 = {256}$$

6.
$$\left(\frac{1}{7}\right)^3 = \frac{1}{343}$$

Glossary

Index

Answers: On Off

7. The table shows the average weights of some endangered mammals. What is the weight of each animal? (Example 4)

black bear: 350 lb; key deer: 75 lb; panther: 120 lb

Animal	Weight (lb)
Black bear	2 • 5 ² • 7
Key deer	3 • 5 ²
Panther	2 ³ • 3 • 5

Evaluate each expression if x = 2 and y = 10. (Examples 5 and 6)

8.
$$x^2 + y^4 = 10,004$$

9.
$$(x^2 + y)^3 = 2,744$$

10. Building on the Essential Question How can I write repeated multiplication using powers? The repeated factor is the base. The number of times it repeats is the exponent.

Rate Yourself!

Are you ready to move on? Shade the section that applies.

For more help, go online to access a Personal Tutor.

Index

Answers: On Off

Independent Practice

Go online for Step-by-Step Solutions

Write each expression using exponents. (Examples 1 and 2)

1.
$$(-5)(-5)(-5)(-5) = \frac{(-5)^4}{1}$$

1.
$$(-5)(-5)(-5)(-5) = \frac{(-5)^4}{2}$$
 2. $3 \cdot 3 \cdot 5 \cdot q \cdot q \cdot q = \frac{3^2 \cdot 5 \cdot q^3}{2}$ **3.** $m \cdot m \cdot m \cdot m \cdot m = \frac{m^5}{2}$

3.
$$m \cdot m \cdot m \cdot m \cdot m = m^5$$

Evaluate each expression. (Example 3)

4.
$$(-9)^4 = 6,561$$

5.
$$\left(\frac{1}{3}\right)^4 = \frac{1}{81}$$

6.
$$\left(\frac{5}{7}\right)^3 = \frac{125}{343}$$

1 In the United States, nearly 8 • 10 9 text messages are sent every month. About how many text messages is this?

(Example 4) 8,000,000,000 or 8 billion

n the United States, nearly 8 • 10 9 text messages are sent every month. About how many text messages is this?

(Example 4) 8,000,000,000 or 8 billion

8. Interstate 70 stretches almost $2^3 \cdot 5^2 \cdot 11$ miles across the United States. About how many miles long is Interstate 70?

(Example 4) 2,200 mi

Evaluate each expression. (Examples 5 and 6)

$$g^5 - h^3$$
 if $g = 2$ and $h = 7$ —311 [10. $c^2 + d^3$, if $c = 8$ and $d = -3$ 37

10.
$$c^2 + d^3$$
, if $c = 8$ and $d = -3$ 37

11.
$$a^2 \cdot b^6$$
 if $a = \frac{1}{2}$ and $b = 2$ **16**

12.
$$(r-s)^3 + r^2$$
 if $r = -3$ and $s = -4$

Exercises a-d.

The metric system is based on powers of 10. For example, one kilometer is equal to 1,000 meters or 10³ meters. Write each measurement in meters as a power of 10.

- a. hectometer (100 meters) 102
- **b.** megameter (1,000,000 meters) 106
- c. gigameter (1,000,000,000 meters) 109
- **d.** petameter (1,000,000,000,000,000 meters) 1015

d. petameter (1,000,000,000,000,000 meters) 10 °C

H.O.T. Problems Higher Order Thinking

- 14. W Identify Structure Write an expression with an exponent that has a value between 0 and 1. Sample answer: $\left(\frac{1}{2}\right)^2$
- $3^4 = 81$, $3^3 = 27$, $3^2 = 9$, $3^1 = 3$. Then use a similar pattern to predict the value of 2^{-1} . Sample answer: As the exponent decreases by 1, the simplified answer is divided by 3; $\frac{1}{2}$
- 16. Peason Abstractly Simplify the expressions below to develop a rule for multiplying powers with the same base.

$$2^{2} \cdot 2^{3} = 32 \text{ or } 2$$
 $3 \cdot 3^{2} = 27 \text{ or } 3$
 $4^{3} \cdot 4 = 256 \text{ or } 4$
 $x^{2} \cdot x^{3} = x$

$$3 \cdot 3^2 = 27 \text{ or } 3$$

$$4^3 \cdot 4 = 256 \text{ or } 4$$

$$x^2 \cdot x^3 = x$$

Sample answer: Keep the bases the same, and add the exponents.

