Name_____

Chapter 4 Calculus Practice Quiz

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

x

Find the location of the indicated absolute extremum for the function.

`g(x)

1) Maximum

-9

Find the extreme values of the function on the interval and where they occur.

3) $g(x) = -x^2 + 10x - 21$ on $3 \le x \le 7$

Find the extreme values of the function and where they occur.

4)
$$y = \frac{x+1}{x^2+2x+2}$$
 4) _____

Give an appropriate answer.

5) Find the value or values of c that satisfy $\frac{f(b) - f(a)}{b - a} = f'(c)$ for the function $f(x) = x + \frac{27}{x}$ on 5) _____ the interval [3, 9].

2) _____

1) _____

3) _____

Use analytic methods to find those values of x for which the given function is increasing and those values of x for which it is decreasing.

6)	
7)	
8)	
9)	
	6) 7) 8) 9)

Use the First Derivative Test to determine the local extrema of the function, and identify any absolute extrema. 10) $f(x) = -x\sqrt{9 - x^2}$ 10)

Use the Concavity Test to find the intervals where the graph of the function is concave up.

¥

11) $y = -3x^2 + 18x + 4$

Find the points of inflection.

d) f'(-3) = f'(3) = 0

-ż

2

-2

ż

12)
$$y = x^3 - 3x^2 + 2x + 15$$
 12)

11) _____

13) _____

Use the graph of f to estimate where f" is 0, positive, and negative.

13) $10^{4}y$ 5^{5} -10^{-5} -5^{5} -10^{5} -10^{5} -10^{5}

Answer Key Testname: CHAPTER 4 CALCULUS PRACTICE QUIZ

- 1) x = -1
- 2) No minimum
- 3) Maximum value is 4 at x = 5; minimum value is 0 at x = 7 and 0 at x = 3
- 4) The maximum is $\frac{1}{2}$ at x = 0; the minimum is $-\frac{1}{2}$ at x = -2.
- 5) 3√3

6) Increasing on (-3, 3), decreasing on ($-\infty$, -3) and (3, ∞)

7)
$$3x^3 + 9x^2 + 5x + C$$

8) $f(x) = \frac{x^3}{3} + 9x + 19$

9) Possible Answer:

- 10) Absolute minimum $\left(\sqrt{\frac{9}{2}}, -\frac{9}{2}\right)$, absolute maximum $\left(-\sqrt{\frac{9}{2}}, \frac{9}{2}\right)$
- 11) None
- 12) (1, 15)
- 13) Zero: x = 0; positive: $(0, \infty)$; negative: $(-\infty, 0)$