\qquad

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Find the location of the indicated absolute extremum for the function.

1) Maximum

2) Minimum

Find the extreme values of the function on the interval and where they occur.

$$
\text { 3) } g(x)=-x^{2}+10 x-21 \text { on } 3 \leq x \leq 7
$$

Find the extreme values of the function and where they occur.

$$
\text { 4) } y=\frac{x+1}{x^{2}+2 x+2}
$$

Give an appropriate answer.

5) Find the value or values of c that satisfy $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$ for the function $f(x)=x+\frac{27}{x}$ on
6) \qquad the interval $[3,9]$.

Use analytic methods to find those values of x for which the given function is increasing and those values of x for which it is decreasing.
6) $f(x)=27 x-x^{3}$
6) \qquad

Find all possible functions with the given derivative.

$$
\text { 7) } f^{\prime}(x)=9 x^{2}+18 x+5
$$

7) \qquad

Find the function with the given derivative whose graph passes through the point P.
8) $f^{\prime}(x)=x^{2}+9, P(3,55)$
8) \qquad

Sketch a graph of a function $\mathbf{y}=\mathbf{f}(\mathbf{x})$ that has the given properties.
9) a) Continuous and differentiable for all real numbers
9) \qquad
b) $\mathrm{f}^{\prime}(\mathrm{x})<0$ on $(-\infty,-3)$ and $(3, \infty)$
c) $f^{\prime}(x)>0$ on $(-3,3)$
d) $f^{\prime}(-3)=f^{\prime}(3)=0$

Use the First Derivative Test to determine the local extrema of the function, and identify any absolute extrema.

$$
\text { 10) } f(x)=-x \sqrt{9-x^{2}}
$$

10) \qquad

Use the Concavity Test to find the intervals where the graph of the function is concave up.

$$
\text { 11) } y=-3 x^{2}+18 x+4
$$

Find the points of inflection.

$$
\text { 12) } y=x^{3}-3 x^{2}+2 x+15
$$

Use the graph of f to estimate where $f^{\prime \prime}$ is 0 , positive, and negative.
13)

13) \qquad

Answer Key

Testname: CHAPTER 4 CALCULUS PRACTICE QUIZ

1) $x=-1$
2) No minimum
3) Maximum value is 4 at $x=5$; minimum value is 0 at $x=7$ and 0 at $x=3$
4) The maximum is $\frac{1}{2}$ at $x=0$; the minimum is $-\frac{1}{2}$ at $x=-2$.
5) $3 \sqrt{3}$
6) Increasing on $(-3,3)$, decreasing on $(-\infty,-3)$ and $(3, \infty)$
7) $3 x^{3}+9 x^{2}+5 x+C$
8) $f(x)=\frac{x^{3}}{3}+9 x+19$
9) Possible Answer:

10) Absolute minimum $\left(\sqrt{\frac{9}{2}},-\frac{9}{2}\right)$, absolute maximum $\left(-\sqrt{\frac{9}{2}}, \frac{9}{2}\right)$
11) None
12) $(1,15)$
13) Zero: $x=0$; positive: $(0, \infty)$; negative: $(-\infty, 0)$
