S.A=
zarh
+2mr2

You need to find the lateral area. The radius of the circular fence is 35 feet. The height is 2 feet.

$$L.A. = 2\pi rh$$

Lateral area of a cylinder

$$L.A. = 2\pi (35)(2)$$

Replace r with 35 and h with 2.

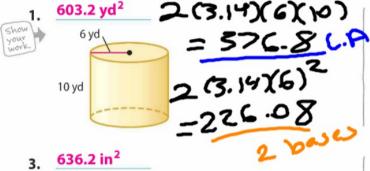
Simplify.

So, about 439.8 square feet of material is needed to make the fence.

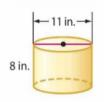
Got It? Do these problems to find out.

- 2 (3.14)(5.1)(2.5)

 Find the area of the label of a can of tuna with a radius of 5.1 centimeters and a bairble scale. the nearest tenth.
 - **d.** Find the total surface area of a cylindrical candle with a diameter of 4 inches and a height of 2.5 inches. Round to the nearest tenth.

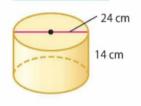

~=~2(3.14)(2)(2.5)₊₂(3.14)(2)

_ 92.9 cm²


م. 56.5 in²

Lesson 4 Surface Area of Cyline

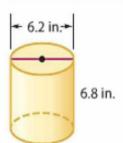
Find the total surface area of each cylinder. Round to the nearest tenth. (Example 1)



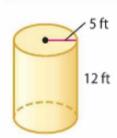
2 466.5 in²

⁴ 1960.4 cm²

5.A = 275-h+29-2



5. Find the total surface area of a water tank with a height of 10 meters and a diameter of 10 meters. Round to the pearest tenth. (Fyample 1) 471.2 m²


5. Find the total surface area of a water tank with a height of 10 meters and a diameter of 10 meters. Round to the nearest tenth. (Example 1)

Find the lateral area of each cylinder. Round to the nearest tenth. (Example 2)

132.4 in²

7 377.0 ft²

8. Find the area of the label of a cylindrical potato chip container with a radius of 3.1 inches and a height of 9.2 inches. Round to the nearest tenth. (Example 2)

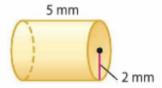
179.2 in²

9. Quilding on the Essential Question How is a calculation affected if you round π to 3.14 or use the π key on your calculator? Explain.

Sample answer: Calculating with more decimal places produces an answer closer to the exact value.

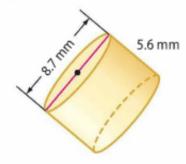
Rate Yours

Are you read Shade the se


For more help, access a Person

Find the total surface area of each cylinder. Round to the nearest tenth. (Example 1)

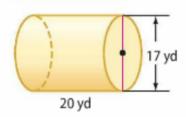
88.0 mm²

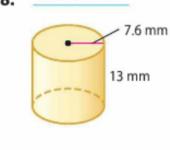




1,120.0 in²

272.0 mm²


5. A cylindrical candle has a diameter of 4 inches and a height of 7 inches. To the nearest tenth, what is the total surface area of the


candle? (Example 1) 113.1 in²

6. Find the total surface area of an unsharpened cylindrical pencil that has a radius of 0.5 centimeter and a height of 19 centimeters. Round to the nearest tenth. (Example 1)
61.3 cm²

Find the lateral area of each cylinder. Round to the nearest tenth. (Example 2)

7. 1,068.1 yd²

Find the lateral area of a cylindrical copper pipe that has a diameter of 6.4 inches and a height of 12 inches. Round to the nearest tenth.

(Example 2) **241.3 in²**

10. Model with Mathematics Refer to the graphic novel frame below.

- a. What is the least amount of paper that will be needed to wrap one candle with no overlap?
 56.9 in²
- b. How many square feet of wrapping paper will be needed to wrap all 70 candles?
 27.7 ft²

H.O.T. Problems Higher Order Thinking

- 11. Persevere with Problems If the height of a cylinder is doubled, will its surface area also double? Explain your reasoning.
 - No, the surface area of the side of the cylinder will double, but the area of the bases will not.
- 12. Reason Inductively Which has a greater surface area: a cylinder with radius 6 centimeters and height 3 centimeters or a cylinder with radius 3 centimeters and height 6 centimeters? Explain your reasoning.
 A cylinder with radius 6 cm and height 3 cm has a greater surface area than a cylinder with height 6 cm and radius 3 cm; Sample answer: The first cylinder has a surface area of 339.3 cm² while the second cylinder has a surface area of 169.6 cm².
- **13.** Reason Inductively A baker is icing a cylindrical cake with radius *r* and height *h*. The baker will ice the top and sides of the cake. Write an equation giving the total area *A* that the baker will ice. Explain why your equation is not the same as the formula for the total surface area of a cylinder.
 - $A=2\pi rh+\pi r^2$; Sample answer: The baker will not ice the bottom of the cake, so you only need to include the area of one of the bases in the equation.