b. The statements for a two-column proof to show that if $m \angle Y = m \angle Z$, then x = 100 are given below. Complete the proof by providing the reasons.

	Statements	Reasons
a.	$m \angle Y = m \angle Z,$ $m \angle Y = 2x - 90,$ $m \angle Z = x + 10$	Given
b.	2x - 90 = x + 10	Substitution
·c.	x - 90 = 10	Subtraction Property of Equality
d.	x = 100	Addition Property of Equality .

	Statements	Reasons	
a.	$m \angle Y = m \angle Z$, $m \angle Y = 2x - 90$, $m \angle Z = x + 10$	Given	
b.	2x - 90 = x + 10	Substitution	
c.	x - 90 = 10	Subtraction Property of Equality	
d.	<i>x</i> = 100	Addition Property of Equality	

Guided Practice

1. Use the figure to complete the paragraph proof. (Example 1)

Given: $m \angle 1 = m \angle 2$, $\angle 1$ and $\angle 2$ are supplementary.

Prove: $\angle 1$ and $\angle 2$ are right angles.

Proof: $m\angle 1 + m\angle 2 = \frac{180^{\circ}}{}$ since they are supplementary angles. Since $m\angle 1 = m\angle 2$, then $m\angle 1 + m\angle 1 = 180^{\circ}$ by **substitution**. Solving the equation gives $m\angle 1 = \frac{90^{\circ}}{}$. Since $m\angle 1 = m\angle 2$, then $m\angle 2$ is also $\frac{90^{\circ}}{}$. Therefore, $\angle 1$ and $\angle 2$ are right angles.

2. Refer to the figure above. Complete the two-column proof to show that if EG = 3x - 1, ED = 2x + 4, and EG = ED, then x = 5. (Example 2)

	Statements	Reasons
a.	EG = 3x - 1, $ED = 2x + 4,$ $EG = ED$	Given
b.	3x - 1 = 2x + 4	Substitution
c.	x - 1 = 4	Subtraction Property of Equality
d.	<i>x</i> = 5	Addition Property of Equality

3. **Quilding on the Essential Question** How is deductive reasoning used in algebra and geometry proofs?

Sample answer: You use facts, definitions, and

properties in proofs.

Rate Yourself!

Are you ready to move on? Shade the section that applies.

For more help, go online to access a Personal Tutor.

3. Construct an Argument Complete the two-column proof to show that if $\angle 1$ and $\angle 2$ are supplementary and $m\angle 1=m\angle 2$, then $\angle 1$ and $\angle 2$ are right angles. (Example 2)

Given: $\angle 1$ and $\angle 2$ are supplementary; $m \angle 1 = m \angle 2$

Prove: $\angle 1$ and $\angle 2$ are right angles

	Statements	Reasons
a.	∠1 and ∠2 are supplementary; m ∠1 = m ∠2	Given
b.	$m\angle 1 + m\angle 2 = 180^{\circ}$	Definition of supplementary angles
c.	$m\angle 1 + m\angle 1 = 180^{\circ}$	Substitution
d.	2(<i>m</i> ∠1) = 180°	Simplify
e.	<i>m</i> ∠1 = 90°	Division Property of Equality
f.	<i>m</i> ∠2 = 90°	$m \angle 1 = m \angle 2$ (Given)
g.	$\angle 1$ and $\angle 2$ are right angles.	Definition of right angles

4. Construct an Argument Complete the two-column proof to show that when two parallel lines are cut by a transversal, consecutive interior angles are supplementary.

Given: parallel lines m and n cut by transversal t

Prove: $\angle 2$ and $\angle 3$ are supplementary.

	Statements	Reasons
a.	Lines m and n are parallel and cut by transversal t	Given
b.	$\angle 1$ and $\angle 2$ form a straight angle.	Definition of straight angle
c.	$m \angle 1 + m \angle 2 = 180$	Definition of supplementary angles
d.	$m \angle 1 = m \angle 3$	Corresponding ∠s have equal measures
e.	$m \angle 3 + m \angle 2 = 180$	Substitution
f.	$\angle 2$ and $\angle 3$ are supplementary angles	Definition of supplementary angles

H.O.T. Problems Higher Order Thinking

5. Reason Abstractly Describe the theorem or definition you could use to find the measure of ∠2.

Sample answer: Vertical angles have the same measure.

6. Persevere with Problems Given the right triangles shown, use inductive reasoning to make a conjecture about the sum of the measures of the two acute angles of any right triangle.

Sample answer: The sum of the measures of the acute angles of a right triangle is 90°. So, the acute angles are complementary.

7. Reason Inductively In the diagram, $m\angle CFE = 90^{\circ}$ and $m\angle AFB = m\angle CFD$. Which of the following conclusions does *not* have to be true?

II
$$\overline{BF}$$
 divides $\angle AFD$ in half IV $\angle CFE$ is a right angle.

