1. Write an equation to represent the function shown in the table. (Example 1)

Input (x)	0	1	2	3	4
Output (y)	0	4	8	12	16

y = 4x

2. Graph the function y = x + 3. (Example 2)

3. The graph below shows the number of inches of rainfall x equivalent to inches of snow y. Make a function table for the input-output values. Write an equation from the graph that can be used to find the total inches of snow y equivalent to inches of rain x. (Examples 3 and 4)

Rain (x)	Snow (y)
1	10
2	20
3	30
4	40

y = 10x

4. @ Building on the Essential Question How are ordered pairs of a function used to create the graph of the function?

Sample answer: Each set of ordered pairs can be plotted on

a coordinate plane. A line is then drawn through each point. FOLDABLES Time to update your F.

Rate Yourself!

How confident are you o finding the equation of function? Check the box that applies.

For more help, go online to access a Personal Tutor.

Independent Practice

Go online for Step-by-Step Solutions

Write an equation to represent each function. (Example 1)

1.	Input (x)	1	2	3	4	5
	Output (y)	6	12	18	24	30

$$y = 6x$$

2.	Input (x)	0	1	2	3	4
l	Output (y)	0	15	30	45	60

$$y = 15x$$

Graph each equation. (Example 2)

5.
$$y = 0.5x + 1$$

6. The graph shows the charges for a health club in a month. Make a function table for the input-output values. Write an equation that can be used to find the total charge *y* for the number of *x* classes. (Examples 3 and 4)

Input (x)	0	1	2	3
Output (y)	30	35	40	45

y = 30 + 5x

The graph shows the amount of money Pasha spent on lunch. Make a function table for the input-output values. Write an equation that can be used to find the money spent y for any number of days x. (Examples 3 and 4)

Input (x)	1	2	3	4
Output (y)	5	10	15	20

y = 5x

- 8. Multiple Representations The table shows the area of a square with the given side length.
 - a. Variables Write an equation that could represent the function table.

				2
y =	x •	X O	r v	x-
, –	^ -	~ ~	. ,	^

b. Graphs Graph the function.

c. Words Is this a linear function? Explain.

no; The graph is curved; it does not form a line.

H.O.T. Problems Higher Order Thinking

9. Model with Mathematics Write about a real-world situation that can be represented by the equation y = 7x. Be sure to explain what the variables represent in the situation. Sample answer: Ray is saving \$7 per week to buy a new DVD player. The variable y represents the total amount he has saved. The variable x represents the number of weeks.

Side Length (x)	Area of Square (y)
1	1
2	4
3	9
4	16

H.O.T. Problems Higher Order Thinking

- 9. Model with Mathematics Write about a real-world situation that can be represented by the equation y = 7x. Be sure to explain what the variables represent in the situation. Sample answer: Ray is saving \$7 per week to buy a new DVD player. The variable y represents the total amount he has saved. The variable x represents the number of weeks.
- 10. Persevere with Problems Write an equation to represent the function in the table shown below. $y = \frac{1}{2}x 3$

Input (x)	6	8	10	12	14	16
Output (y)	0	1	2	3	4	5

11. Persevere with Problems The inverse of a relationship can be found by switching the coordinates in each ordered pair. Complete the table for three input and output values of y = x + 3 and its inverse. Then use the table to write an equation of the inverse of y = x + 3. y = x - 3

Sample answer

y=x+3				
Input (x)	1	2	3	
Output (y)	4	5	6	

Inverse of $y = x + 3$				
Input (x)	4	5	6	
Output (y)	1	2	3	