CHEST PROPERTY

V

1. The table shows the life expectancy, in years, for people born in certain years.

(Examples 1–4)

•	Years Since 1900	0	10	20	30	40	50	60	70	80	90	100
	Life Expectancy	47.3	50.0	54.1	59.7	62.9	68.2	69.7	70.8	73.7	75.4	77.1

70.8-500 M=70-10

a. Construct a scatter plot of the data. Then draw and assess a line that best represents the data.

b. Write an equation in slope-intercept form for the line of fit and interpret the slope and *y*-intercept.

= 20 = 3

מווע מספכס מ ווווב נוומג מכטג ובמוכסכוונט נווב עמגמ.

b. Write an equation in slope-intercept form for the line of fit and interpret the slope and *y*-intercept.

Y= 1×+47.3

c. Use the equation to make a conjecture about the life expectancy for a person born in 2020.

1(10)+47.3=40+47.3

2. Question Building on the Essential Question Why do we estimate a line of best fit for a scatter plot?

120

Rate Yourself!

Are you ready to move on? Shade the section that applies.

YES ? NO

Guided Practice

1. The table shows the life expectancy, in years, for people born in certain years.

(Examples 1–4)

Years Since 1900	0	10	20	30	40	50	60	70	80	90	100
Life Expectancy	47.3	50.0	54.1	59.7	62.9	68.2	69.7	70.8	73.7	75.4	77.1

a. Construct a scatter plot of the data. Then draw and assess a line that best represents the data.

Sample answer: The data points are either on

the line of best fit or are very close to the

line, so the line of best fit is a good model of

the data.

b. Write an equation in slope-intercept form for the line of fit and interpret the slope and *y*-intercept.

y = 0.3x + 48; for every year since 1900, life

expectancy increased by 0.3 year

c. Use the equation to make a conjecture about the life expectancy for a person born in 2020.

Sample answer: 84 years

Rate Yourself!

Are you ready to move on? Shade the section that applies.

2. **Building on the Essential Question** Why do we estimate a line of best fit for a scatter plot?

Sample answer: A line of best fit helps in making

interpretations and predictions about the situation

modeled in the data set.

Independent Practice

- The results of a survey about women's shoe sizes and heights are shown. (Examples 1 and 2)
 - a. Construct a scatter plot of the data. Then draw and assess a line that best represents the data. Sample answer: The data points are either on the line of best fit or very close to the line, so the line of best fit is a good model of the data.

				Shoe	Size		
	0		2	4	6	8	10
	10						X
Height (inches)	20						
9	30						\Box
Ŧ	40						+
2,	50		_				H
ન	60	H			سمث		•
es	70	Н					*
	80	У					

Height (inches) and Shoe Size										
Shoe Size	Height	Shoe Size	Height							
8	66	$6\frac{1}{2}$	65							
8	65	9	68							
$7\frac{1}{2}$	65	$7\frac{1}{2}$	63							
7	62	7	64							
7	62	5 1	62							
9	68	5	60							
9	65	9	67							
9	65	6	59							

b. Use the line of best fit to make a conjecture about the height of a

female who wears a size 5 shoe. Sample answer: 57.5 in.

2. The table shows the number of Calories burned when walking laps around a track. (Examples 1-4)

Laps Completed	1	2	3	4	5	6	7
Calories Burned	30	70	80	112	150	170	225

- **a.** Construct a scatter plot of the data. Then draw a line that best represents the data.
- b. Write an equation for the line of best fit. Use the equation to make a conjecture about the number of Calories burned if someone walks 15 laps.

Sample answer: y = 30x + 5; 455 Calories

- The scatter plot shows the number of girls who participate in ice hockey. (Examples 3 and 4)
 - Write an equation in slope-intercept form for the line of best fit that is drawn, and interpret the slope and y-intercept.
 Sample answer: y = 500x + 2,250; Every year an additional 500 girls play ice hockey. In 1996, 2,250 girls played ice hockey.
 - b. Use the equation to make a conjecture about the number of girls that will participate in ice hockey in 2020. Sample answer: 14,250 girls

4. Model with Mathematics Refer to the graphic novel frame below for Exercises a–b.

- **a.** The scatter plot shows the average ticket prices since 1995. Draw a line that best represents the data in your scatter plot.
- **b.** Write an equation in slope-intercept form for the line of best fit. Make a conjecture about the cost of a movie ticket in 2020.

Sample answer:
$$y = 0.25x + 4$$
;

about \$10.25

H.O.T. Problems Higher Order Thinking

- 5. Use Math Tools Use a newspaper or the Internet to find a scatter plot that consists of at least seven data points. Tape the scatter plot to your book. Draw a line of best fit and write an equation for the line. See students' work.
- 6. Persevere with Problems Describe or draw a scatter plot where a line of fit does not model the data. Explain your reasoning to a classmate.
 Sample answer: A scatter plot where there is no association or where the data is nonlinear. In either case, you cannot draw a straight line to model the data.
- Justify Conclusions Determine whether each statement is always, sometimes, or never true for data with a positive association. Justify your response.
 - a. The slope of the line of best fit is positive.
 always; Sample answer: A line of best fit for data with a positive association
 will have a positive slope.
 - b. The y-intercept is positive.
 sometimes; Sample answer: Depending on the data, the y-intercept could be positive, negative, or zero.