2. Evaluate
$$x - y$$
 if $x = 64$ and $y = 27$.

$$x - y = 64 - 27$$
 Replace x with 64 and y with 27.
= 37 Subtract 27 from 64.

3. Evaluate 6x if $x = \frac{1}{2}$.

$$6x = 6 \cdot \frac{1}{2}$$
 Replace x with $\frac{1}{2}$.
= 3 Multiply 6 and $\frac{1}{2}$.

Got It? Do these problems to find out.

Evaluate each expression if a = 6, b = 4, and $c = \frac{1}{3}$.

a.
$$a + 8$$

a.
$$a + 8$$
 b. $a - b$ **c.** $a \cdot b$

To evaluate multi-step expressions, replace each variable with the correct value and follow the order of operations.

Examples

4. Evaluate
$$5t + 4$$
 if $t = 3$.

$$5t + 4 = 5 \cdot 3 + 4$$
 Replace t with 3.
= 15 + 4 Multiply 5 and 3.
= 19 Add 15 and 4.

5. Evaluate $4x^2$ if $x = \frac{1}{8}$.

$$4x^{2} = 4 \cdot \left(\frac{1}{8}\right)^{2}$$
Replace x with $\frac{1}{8}$.
$$= 4 \cdot \frac{1}{64}$$
Simplify $\left(\frac{1}{8}\right)^{2}$.
$$= \frac{1}{16}$$
Multiply.

Guided Practice

Evaluate each expression if m = 4, z = 9, and $r = \frac{1}{6}$. (Examples 1–6)

2.
$$z - m$$
 5

PENDA 2

7. The amount of money that remains from a 20-dollar bill after Malina buys 4 party favors for p dollars each is 20 - 4p. Find the amount remaining if $e^{\frac{2p}{2}}$

7. The amount of money that remains from a 20-dollar bill after Malina buys 4 party favors for p dollars each is 20 – 4p. Find the amount remaining if each favor cost \$3. (Example 7)

8. Building on the Essential Question How are numerical expressions and algebraic expressions different?

Sample answer: Numerical expressions include only numerical values and operations. Algebraic expressions can include numerical values, operations, and variables.

Evaluate each expression if m = 2, n = 16, and $p = \frac{1}{3}$. (Examples 1–6)

1.
$$m + 10$$
 12

1.
$$m + 10$$
 12 2. $n \div 4$ 4 3. $m + n$ 18 4. $6m - 1$ 11

9. A paper recycling bin has the dimensions shown. Use the expression s^3 , where s represents the length of a side, to find the volume of the bin. Write your answer in cubic meters. (Example 7)

- a. What is the total cost for one individual admission and one individual movie pass on Family Night?
 \$14.50
- b. The expression 14.50x can be used to find the total cost for x tickets on Family Night for admission and the movie. What is the cost for 3 tickets?
 \$43.50

Tinancial Literacy Julian earns \$13.50 per hour. His company deducts 23% of his pay each week for taxes. Julian uses the expression 0.77(13.50h) to compute his earnings after taxes for the hours h he works. What will be his earnings after taxes, if he works 40 hours? \$415.80

Evaluate each expression if x = 3, y = 12, and z = 8.

12.
$$4z + 8 - 6$$
 34

13.
$$7z \div 4 + 5x$$
 29

12.
$$4z + 8 - 6$$
 34 13. $7z \div 4 + 5x$ **29 14.** $y^2 \div (3z)$ **6**

15. Be Precise To find the area of a trapezoid, use the expression $\frac{1}{2}h(b_1+b_2)$, where h represents the height, b_1 represents the length of the top base, and b_2 represents the length of the bottom base. What is the area of the trapezoidal table? 7 ft²

H.O.T. Problems Higher Order Thinking

- 16. Persevere with Problems Isandro and Yvette each have a calculator. Yvette starts at 100 and subtracts 7 each time. Isandro starts at zero and adds 3 each time. If they press the keys at the same time, will their displays ever show the same number? If so, what is the number? yes; 30
- 17. Reason Abstractly Describe the difference between algebraic expressions and numerical expressions.
 Sample answer: Both numerical expressions and algebraic expressions use operations. An algebraic expression, such as 6 + a, includes numbers and variables, where a numerical expression, such as 6 + 3, only includes numbers.

n	1	2	3	4	
5 <i>n</i>	5 × 1 = 5	5 × 2 = 10	5 × 3 = 15	5 × 4 = 20	
5 ⁿ		5 ² = 25			

 5^n ; Sample answer: The value of the expression 5^n grows at a faster rate than it does for 5n because each value is being multiplied by 5. In 5n, 5 is added to each value. 5^n is repeated multiplication while 5n is repeated addition.