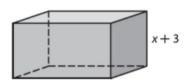
Simplify. Assume that no variable equals 0. (Lesson 5-1)

1.
$$(3x^2y^{-3})(-2x^3y^5)$$
 -6 x^5y^2 2. $4t(3rt-r)$ 12 rt^2 - 4 rt

2.
$$4t(3rt - r)$$
 12rt² - 4rt


3.
$$\frac{3a^4b^3c}{6a^2b^5c^3} \frac{a^2}{2b^2c^2}$$
 4. $\left(\frac{p^2r^3}{pr^4}\right)^2 \frac{p^2}{r^2}$

4.
$$\left(\frac{p^2r^3}{pr^4}\right)^2 \frac{p^2}{r^2}$$

5.
$$(4m^2 - 6m + 5) - (6m^2 + 3m - 1) - 2m^2 - 9m + 6$$

6.
$$(x + y)(x^2 + 2xy - y^2)$$
 $x^3 + 3x^2y + xy^2 - y^3$

7. MULTIPLE CHOICE The volume of the rectangular prism is $6x^3 + 19x^2 + 2x - 3$. Which polynomial expression represents the area of the base? (Lesson 5-1) C

A
$$6x^4 + 37x^3 + 59x^2 + 3x - 9$$

B
$$6x^2 + x + 1$$

C
$$6x^2 + x - 1$$

D
$$6x + 1$$

- **12. PENDULUMS** The formula $L(t) = \frac{8t^2}{\pi^2}$ can be used to find the length of a pendulum in feet when it swings back and forth in t seconds. Find the length of a pendulum that makes one complete swing in 4 seconds. (Lesson 5-3) about 12.97 ft
- **13. MULTIPLE CHOICE** Find 3f(a-4)-2h(a) if $f(x)=x^2+3x$ and $h(x) = 2x^2 - 3x + 5$. (Lesson 5-3) **D**

$$A - a^2 + 15a - 74$$

B
$$-a^2 - 2a - 1$$

$$a^2 + 9a - 2$$

D
$$-a^2 - 9a + 2$$

14. ENERGY The power generated by a windmill is a function of the speed of the wind. The approximate power is given by the function $P(s) = \frac{s^3}{1000}$, where s represents the speed of the wind in kilometers per hour. Find the units of power P(s) generated by a windmill when the wind speed is 18 kilometers per hour. (Lesson 5-3) 5.832 units

Simplify. (Lesson 5-2)

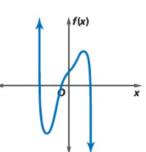
8.
$$(4r^3 - 8r^2 - 13r + 20) \div (2r - 5)$$
 $2r^2 + r - 4$

9.
$$\frac{3x^3-16x^2+9x-24}{x-5}$$
 3x² - x + 4 - $\frac{4}{x-5}$

 Describe the end behavior of the graph. Then determine whether it represents an odd-degree or an even-degree polynomial function and state the number of real zeros. (Lesson 5-3)

end behavior:

$$f(x) \to \infty$$
 as


$$x \to -\infty$$
 and

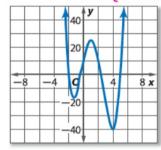
$$f(x) \to -\infty$$
 as

$$x \to \infty$$
; odd-

degree function;

3 real zeros

- **11. MULTIPLE CHOICE** Find p(-3) if $p(x) = \frac{2}{3}x^3 + \frac{1}{3}x^2 5x$. (Lesson 5-3) **F**
 - **F** 0


H 30

G 11

J 36

- Use $f(x) = x^3 2x^2 3x$ for Exercises 15–17. (Lesson 5-4)
- 15. Graph the function. See margin.
- **16.** Estimate the *x*-coordinates at which the relative maxima and relative minima occur. x = -0.5 and 2
- 17. State the domain and range of the function.
- **18.** Determine the consecutive integer values of x between which each real zero is located for $f(x) = 3x^2 3x 1$. (Lesson 5-4) between -1 and 0 and between 1 and 2

Refer to the graph. (Lesson 5-4) 17. $D = \{all \ real \ numbers\},\ R = \{all \ real \ numbers\}$

maximum at $x \approx 1$; minima at $x \approx -1.5$ and $x \approx 4$

- **19.** Estimate the *x*-coordinate of every turning point, and determine if those coordinates are relative maxima or relative minima.
- 20. Estimate the x-coordinate of every zero. -2, -0.5, 2.5, 5
- 21. What is the least possible degree of the function? 4

Additional Answer