

т	n	н	-	x	

-2	$-(-2)^2 + 4 = 0$	0	(-2, 0)
-1	$-(-1)^2 + 4 = 3$	3	(-1, 3)
0	$-(0)^2 + 4 = 4$	4	(0, 4)
1	$-(1)^2 + 4 = 3$	3	(1, 3)
2	$-(2)^2 + 4 = 0$	0	(2, 0)

sary	Index			
4	1		0	
	1		,	Y

Got It? Do this problem to find out.

a. Graph
$$y = 6x^2$$
.

-x2+5

Guilded Practice

1. The function $a = 0.2v^2$ models the acceleration of a carnival ride, where a is the acceleration toward the center of the ride in meters per second every second and v is the velocity in meters per second. Graph this function. Then use your graph to estimate the velocity of the ride at an acceleration of 1 meter per second

every second. (Examples 3 and 4)

Sample answer: about 2.2 mps

Graph each function. (Examples 1 and 2)

2.
$$y = 3x^2$$

3.
$$y = -5x^2$$

4. **Quilding on the Essential Question** When does the graph of a quadratic function open upward or downward?

Sample answer: The graph opens upward if the coefficient of the variable that is squared is positive, downward if it is negative.

Graph each function. (Examples 1 and 2)

$$y = 4x^2$$

2.
$$y = -3x^2$$

A penny is dropped from a height of 196 feet off a bridge. The function $d = -16t^2 + 196$ models the distance d in feet the penny is from the surface of the water at time t seconds. Graph this function. Then use your graph to estimate the time it will take for the penny to reach

the water. (Examples 3 and 4) about 3.5 s

4. The area A in square feet of a projected movie on a movie screen can be represented by the equation $A = 0.25d^2$, where d represents the distance from a projector to the movie screen. Graph the function. Then use your graph to estimate the distance from the projector to a screen if the area of the movie is 7 square feet.

(Examples 3 and 4) about 5.2 ft

- **5.** Anna has trim to make a rectangular border for a scrapbook page. The section inside the border is x inches long and (12 x) inches wide.
 - **a.** Write a function to represent the area A of the section inside the border. $A = 12x x^2$
 - **b.** What should the dimensions of the section be to enclose the maximum area inside the border? (*Hint*: Graph the function and find the *x*-coordinate of the point at the peak of the graph.) 6 in. by 6 in.

Identify Structure Without graphing, determine whether each equation represents a linear or nonlinear function. Explain.

- y = 3x linear; Sample answer: The equation is written in slopeintercept form so it is a straight line.
- 7. y = 2x² nonlinear; Sample answer:The function is quadratic.
- 8. $y = -3x^2$ nonlinear; Sample answer: The function is quadratic.

- 9. y = -6xlinear; Sample answer: The
 equation is written in slopeintercept form so it is a
 straight line.
- 10. 5x + y = 7linear; Sample answer: Theequation can be written inslope-intercept form so it isa straight line.
- 11. $7x^2 + y = 24$ nonlinear; Sample answer:
 The function is quadratic.

- 12. Persevere with Problems The graphs of quadratic functions may have exactly one highest point, called a *maximum*, or exactly one lowest point, called a *minimum*. Graph each quadratic equation. Determine whether each graph has a maximum or a minimum. If so, give the coordinates of each point.
- **a.** $y = 2x^2 + 1$

minimum; (0, 1)

b. $y = -x^2 + 5$

maximum; (0, 5)

c. $y = x^2 - 3$

- minimum; (0, -3)
- 13. Model with Mathematics Write the equation of a quadratic function that opens upward and has its minimum at (0, -3.5). Sample answer: $y = x^2 3.5$
- 14. Reason Inductively The equation $y = ax^2 + bx + c$ represents a quadratic function. What does the constant c represent? Explain. the y-intercept; Sample answer: When a graph crosses the y-axis, x = 0. Substitute 0 for x in the equation, and y = c, so c represents the y-intercept.