Got It? Do these problems to find out.

Write each power as a product of the same factor. Then find the value.

$$c. 10^5$$

e.
$$\left(\frac{1}{4}\right)^2$$

 $10 \times 10 \times 10 \times 10 \times$ _ 10; 100,000

$$\lambda$$
. 2.1 × 2.1; 4.41

$$e. \frac{1}{4} \times \frac{1}{4}; \frac{1}{16}$$

Guided Practice

Write each product using an exponent. (Examples 1 and 2)

1.
$$8 \times 8 \times 8 = \frac{8^3}{}$$

2.
$$1 \times 1 \times 1 \times 1 \times 1 = 15$$

Write each power as a product of the same factor. Then find the value. (Examples 3-5)

3.
$$\left(\frac{1}{7}\right)^3 =$$

$$\frac{1}{7} \times \frac{1}{7} \times \frac{1}{7} = \frac{1}{343}$$
4. $2^5 =$

$$2 \times 2 \times 2 \times 2 \times 2 \times 2; 32$$

4.
$$2^5 =$$

$$2 \times 2 \times 2 \times 2 \times 2$$
; 32

5.
$$1.4^2 =$$

$$1.4 \times 1.4$$
; 1.96

6. Coal mines have shafts that can be as much as 7³ feet deep. About how many feet deep into Earth's crust are these shafts? (Example 6)

about 343 feet

7. Q Building on the Essential Question How is using exponents helpful? Sample answer: A product of like factors can be written in a simpler, shorter format $9 \times 9 \times 9$ can be written as 9^8 .

Rate Yourself!

How confident are you about powers and exponents? Shade the ring on the target.

For more help, go online to access a Personal Tutor.

Write each product using an exponent. (Examples 1 and 2)

1.
$$6 \times 6 =$$

6²

2.
$$1 \times 1 \times 1 =$$

13

3.
$$5 \times 5 \times 5 \times 5 \times 5 \times 5 =$$

$$5^{6}$$

12²

$$27 \times 27 \times 27 \times 27 = 27^4$$

6.
$$15 \times 15 \times 15 =$$

Write each power as a product of the same factor. Then find the value. (Examples 3-5)

$$6^4 =$$

 $6 \times 6 \times 6 \times 6$; 1,296

8.
$$0.5^3 =$$

 $\textbf{0.5} \times \textbf{0.5} \times \textbf{0.5}; \textbf{0.125}$

$$\left(\frac{1}{8}\right)^2 = \frac{1}{8} \times \frac{1}{8} = \frac{1}{64}$$

- 10. Identify Repeated Reasoning A byte is a basic unit of measurement for information storage involving computers. (Example 6)
 - **a.** A kilobyte is equal to 10³ bytes. Write 10³ as a product of the same factor. Then find the value.

 $10 \times 10 \times 10$; 1,000

b. A megabyte is equal to 10⁶ bytes. Write 10⁶ as a product of the same factor. Then find the value.

 $10 \times 10 \times 10 \times 10 \times 10 \times 10$; 1,000,000

c. How many more bytes of information are in a gigabyte than a megabyte? 999,000,000 bytes

Find the value of each expression.

$$10.5^4 + 1 = 1.0625$$

12.
$$3.2^3 \times 10 =$$
 327.68

13.
$$10.3^3 + 8 = 1,100.727$$

H.O.T. Problems Higher Order Thinking

- 14. Model with Mathematics Write a power whose value is greater than 1,000. Sample answer: 50²
- **15.** Persevere with Problems Use the table to solve.
 - a. Describe the pattern for the powers of 2.
 Write the values of 2¹ and 2⁰ in the table.
 The next values are found by dividing the previous power by 2.
 - **b.** Describe the pattern for the powers of 4.

Powers of 2	Powers of 4	Powers of 10
2 ⁴ = 16	4 ⁴ = 256	104 = 10,000
$2^3 = 8$	4 ³ = 64	103 = 1,000
$2^2 = 4$	4 ² = 16	$10^2 = 100$
2 ¹ = 2	4 = 4	101 = 10
2 ⁰ = 1	40 = 1	100 = 1

- b. Describe the pattern for the powers of 4.

 Write the values of 4¹ and 4⁰ in the table.

 Values are found by dividing the previous power by 4.
- c. Describe the pattern for the powers of 10. Write the values of 10¹ and 10⁰ in the table.
 The next values are found by dividing the previous power by 10.
- d. Write a rule for finding the value of any base with an exponent of 0.
 Any nonzero number with an exponent of 0 has a value of 1.
- **16. Be Precise** Multiplication is defined as repeated addition. Use the word repeated to define exponential form. Justify your reasoning.

Sample answer: Exponential form is a short way to write repeated multiplication of a common factor such as $5 \times 5 \times 5 \times 5 = 5^4$.

17. Reason Inductively Suppose the population of the United States is about 230 million. Is this number closer to 10⁷ or 10⁸? Explain your reasoning. 10⁸; Sample answer: 10⁷ = 10,000,000 and 10⁸ = 100,000,000.

100,000,000 is much closer to 230,000,000 than 10,000,000.