3-5 Arithmetic Sequences as Linear Functions

Recognize Arithmetic Sequences You can relate the pattern of team times to linear functions. A **sequence** is a set of numbers, called the **terms of the sequence**, in a specific order. Look for a pattern in the information given for the women's crew team. Make a table to analyze the data.

Distance (m)	400	800	1200	1600	2000	
Time (min : sec)	1:32	3:04	4:36	6:08	7:40	
+ 1:32 + 1:32 + 1:32 + 1:32						

As the distance increases in regular intervals, the time increases by 1 minute 32 seconds. Since the difference between successive terms is constant, this is an **arithmetic sequence**. The difference between the terms is called the **common difference** d.

Example 1 Identify Arithmetic Sequences

Determine whether each sequence is an arithmetic sequence. Explain.

a.
$$-4$$
, -2 , 0 , 2 , ...

$$-4$$
 -2 0 2 $+2$ $+2$ $+2$

The difference between terms in the sequence is constant. Therefore, this sequence is arithmetic.

b.
$$\frac{1}{2}$$
, $\frac{5}{8}$, $\frac{3}{4}$, $\frac{13}{16}$, ...

$$\frac{1}{2} \quad \frac{5}{8} \quad \frac{3}{4} \quad \frac{13}{16} \\ + \frac{1}{8} + \frac{1}{8} + \frac{1}{16}$$

This is not an arithmetic sequence. The difference between terms is not constant.

Example 2 Find the Next Term

Find the next three terms of the arithmetic sequence 15, 9, 3, -3,

Step 1 Find the common difference by subtracting successive terms. Step 2 Add -6 to the last term of the sequence to get the next term.

The common difference is -6.

The next three terms in the sequence are -9, -15, and -21.

Each term in an arithmetic sequence can be expressed in terms of the first term a_1 and the common difference d.

Term	Symbol	In Terms of a_1 and d	Numbers
first term	a_1	a_1	8
second term	a_2	$a_1 + d$	8 + 1(3) = 11
third term	a_3	$a_1 + 2d$	8 + 2(3) = 14
fourth term	a_4	$a_1 + 3d$	8 + 3(3) = 17
:	:	:	:
nth term	a_n	$a_1 + (n-1)d$	8 + (n-1)(3)

KeyConcept nth Term of an Arithmetic Sequence

The *n*th term of an arithmetic sequence with first term a_1 and common difference *d* is given by $a_n = a_1 + (n-1)d$, where *n* is a positive integer.

nth term

$$a_n$$

$$a_1 + (n-1)d$$
 8 + $(n-1)(3)$

$$8 + (n-1)(3)$$

KeyConcept *n*th Term of an Arithmetic Sequence

The *n*th term of an arithmetic sequence with first term a_1 and common difference d is given by $a_n = a_1 + (n-1)d$, where n is a positive integer.

Example 3 Find the nth Term

a. Write an equation for the nth term of the arithmetic sequence $-12, -8, -4, 0, \dots$

Step 1 Find the common difference.

The common difference is 4.

Step 2 Write an equation.

$$a_n = \frac{a_1}{1} + (n-1)d$$
 Formula for the *n*th term
$$= \frac{-12}{1} + (n-1)4$$

$$= -12 + 4n - 4$$

$$= 4n - 16$$
 Formula for the *n*th term
$$a_1 = -12 \text{ and } d = 4$$
Distributive Property
Simplify.

b. Find the 9th term of the sequence.

Substitute 9 for n in the formula for the nth term.

$$a_n = 4n - 16$$
 Formula for the *n*th term $a_9 = 4(9) - 16$ $n = 9$ $a_9 = 36 - 16$ Multiply. $a_9 = 20$ Simplify.

c. Graph the first five terms of the sequence.

	п	4n — 16	a _n	(0, 8,)	
	1	4(1) 16	-12	(1, -12)	
Г	2	4(2) - 16	-8	(2, -8)	
Г	3	4(3) — 16	-4	(3, -4)	
Г	4	4(4) - 16	0	(4, 0)	
Г	5	4(5) - 16	4	(5, 4)	

d. Which term of the sequence is 32?

In the formula for the nth term, substitute 32 for a_n .

$$a_n = 4n - 16$$
 Formula for the *n*th term $32 = 4n - 16$ $a_n = 32$ $32 + 16 = 4n - 16 + 16$ Add 16 to each side. $48 = 4n$ Simplify. $a_n = 32$ Divide each side by 4.

Real-World Example 4 Arithmetic Sequences as Functions

INVITATIONS Marisol is mailing invitations to her quinceañera. The arithmetic sequence \$0.42, \$0.84, \$1.26, \$1.68, ... represents the cost of postage.

a. Write a function to represent this sequence.

The first term, a_1 , is 0.42. Find the common difference.

$$0.42 \quad 0.84 \quad 1.26 \quad 1.68 \\ +0.42 +0.42 +0.42$$

The common difference is 0.42.

$$a_n = a_1 + (n-1)d$$
 Formula for the *n*th term
$$= 0.42 + (n-1)0.42$$
 $a_1 = 0.42$ and $d = 0.42$
$$= 0.42 + 0.42n - 0.42$$
 Distributive Property
$$= 0.42n$$
 Simplify.

The function is f(n) = 0.42n.

b. Graph the function and determine the domain.

The rate of change of the function is 0.42. Make a table and plot points.

n	f(n)
1	0.42
2	0.84
3	1.26
4	1.68
5	2.10

The domain of a function is the number of invitations Marisol mails. So, the domain is $\{1, 2, 3, 4, ...\}$.

Check Your Understanding

Step-by-Step Solutions begin on page R13.

Determine whether each sequence is an arithmetic sequence. Write *yes* or *no*. Explain.

No; there is no 1. 18, 16, 15, 13, ... common difference. **2.** 4, 9, 14, 19, ... Yes; the common difference is 5.

Find the next three terms of each arithmetic sequence. Example 2

Example 3 Write an equation for the nth term of each arithmetic sequence. Then graph the first five terms of the sequence. 5-6. See margin for graphs.

5. 15, 13, 11, 9, ...
$$a_n = 17 - 2n$$

6.
$$-1$$
, -0.5 , 0 , 0.5 , ... $a_n = 0.5n - 1.5$

Example 4 7. SAVINGS Kaia has \$525 in a savings account. After one month she has \$580 in the account. The next month the balance is \$635. The balance after the third month is \$690. Write a function to represent the arithmetic sequence. Then graph the function. a(n) = 55n + 525; See margin for graph.

Additional Answers

Practice and Problem Solving

Extra Practice is on pag

Example 1 Determine whether each sequence is an arithmetic sequence. Write yes or no. Explain. Yes: the common

9.
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{5}{8}$, $\frac{7}{16}$, ... No; there is no common difference.

10.
$$-10$$
, -7 , -4 , 1 , ... No; there is no common difference.

Example 2 Find the next three terms of each arithmetic sequence.

14. 21, 19, 17, 15, ... **13, 11, 9 15**
$$-\frac{1}{2}$$
, 0, $\frac{1}{2}$, 1, ... $1\frac{1}{2}$, **2**, $2\frac{1}{2}$

16.
$$2\frac{1}{3}$$
, $2\frac{2}{3}$, 3, $3\frac{1}{3}$, ... $3\frac{2}{3}$, **4**, $4\frac{1}{3}$

16.
$$2\frac{1}{3}$$
, $2\frac{2}{3}$, 3 , $3\frac{1}{3}$, ... $3\frac{2}{3}$, **4**, $4\frac{1}{3}$ **17.** $\frac{7}{12}$, $1\frac{1}{3}$, $2\frac{1}{12}$, $2\frac{5}{6}$, ... $3\frac{7}{12}$, $4\frac{1}{3}$, $5\frac{1}{12}$

Write an equation for the nth term of the arithmetic sequence. Then graph the first Example 3 five terms in the sequence. See Ch. 3 Answer Appendix for graphs.

18.
$$-3$$
, -8 , -13 , -18 , ... $a_n = -5n + 2$ **19.** -2 , 3 , 8 , 13 , ... $a_n = 5n - 7$

19.
$$-2$$
, 3, 8, 13, ... $a_n = 5n - 7$

20.
$$-11$$
, -15 , -19 , -23 , ... $a_n = -4n - 7$

20.
$$-11$$
, -15 , -19 , -23 , ... $a_n = -4n - 7$ **21.** -0.75 , -0.5 , -0.25 , 0 , ... $a_n = 0.25n - 1$

22. AMUSEMENT PARKS Shiloh and her friends spent the day at an amusement park. In Example 4 the first hour, they rode two rides. After 2 hours, they had ridden 4 rides. They had ridden 6 rides after 3 hours.

- **a.** Write a function to represent the arithmetic sequence. f(n) = 2n
- b. Graph the function and determine the domain. See Ch. 3 Answer Appendix.
- 23. CCSS MODELING The table shows how Ryan is paid at his lumber yard job.

Number of 10-ft 2×4 Planks Cut	1	2	3	4	5	6	7
Amount Paid in Commission (\$)	8	16	24	32	40	48	56

- **a.** Write a function to represent Ryan's commission. f(n) = 8n
- b. Graph the function and determine the domain. See Ch. 3 Answer Appendix.

Lesson 3-5

18.

19.

21.

 $D = \{1, 2, 3, 4, ...\}$

23b.

 $D = \{1, 2, 3, 4, \ldots\}$