What makes this an

I can find the surface area

of three-dimensional figures.

How does this fit with other words and concepts I know?

I've already found the surface area of other solids and the volume of a cone.

Real-World Link

Bobbie is making waffle cones from scratch. Use the Pythagorean Theorem to find the slant height ℓ of the cone if the radius is 2 inches and the height is 6 inches. Round to the nearest tenth. 6.3 in.

Cones

connectED.mcgraw-hill.com

Lesson 5 Surface Area of Cones 631

Guided Practice

Find the lateral area of each cone. Round to the nearest tenth. (Example 1)

1. 678.6 ft²

3. 301.6 cm²

2. 282.7 m²

4. 230.9 m²

Find the surface area of each cone. Round to the nearest tenth. (Example 2)

5. 1,276.3 in²

6. 122.5 m²

7. A local ice cream shop sells waffle cones dipped in chocolate. The waffle cone has a diameter $2\frac{5}{8}$ inches and a slant height of 6 inches. Find the lateral area of the waffle cone. Round to the nearest tenth. (Example 3)

24.7 in²

8. **Quilding on the Essential Question** How does the volume of a three-dimensional figure differ from its surface area?

Volume is the amount a container holds. Surface area

is the sum of the areas of the surfaces of the figure.

Independent Practice

Find the lateral area of each cone. Round to the nearest tenth. (Example 1)

2. 1,979.2 mm²

3. 785.4 m²

Find the surface area of each cone. Round to the nearest tenth. (Example 2)

4. 2,082.9 in²

5. 279.5 cm²

6. 505.8 m²

A snow cone has a diameter of 1.9 inches and a slant height of 4.5 inches. What is the lateral area of the snow cone? Round to the nearest tenth. (Example 3)

13.4 in²

8. An active conical volcano has a radius of about 2.5 kilometers and slant height of about 9.6 kilometers. What is the lateral area of the volcano? Round to the nearest

tenth. (Example 3) 75.4 km²

- **9.** The lateral area of a cone with a diameter of 15 millimeters is about 333.5 square millimeters.
 - a. Find the surface area of the cone. Round to the nearest tenth.

510.2 mm²

b. What is the slant height of the cone? Round to the nearest tenth.

14.2 mm

$$SA = 2\pi r^2 + 2\pi rh$$

$$\leq A = \pi v I + \pi v^2$$

$$V = \frac{4}{3}\pi r^3$$

$$V=\frac{2}{3}\pi r^3$$

d

H.O.T. Problems Higher Order Thinking

11. Find The Error Enrique is finding the surface area of a traffic cone. The traffic cone has a diameter of 10 inches and a height of 12 inches. Find his mistake and correct it.

Enrique did not use the right

radius. He did not divide the

diameter by 2 to get the

radius; 267.04 in²

See students' work.

13. Which has a greater surface area: a square pyramid with a base of x units and a slant height of ℓ units or a cone with a diameter of x units and a slant height of ℓ units? Explain your reasoning.

Square pyramid; sample answer: The surface area of the pyramid is $x^2 + 2x\ell$. If you use

 $\pi \approx 3.14$, the surface area of the cone is $0.785x^2 + 1.57x\ell$. For all positive values of x and

 ℓ , the surface area of the pyramid is greater than the surface area of the cone.