Index

Answers: On Off

Lesson

Negative Exponents

ects The table shows the approximate ng beats per minute for certain insects.

Write a ratio in simplest form that compares the number of wing beats

for a butterfly to a housefly.

Write the ratio as a fraction with an exponent in the denominator and as a decimal.

Insect	Wing Beats per Minute		
house fly	10,000		
small butterfly	100		

dard Form

WHY is it helpful to write numbers in different ways?

Content Standards 8.EE.1

MP Mathematical Practices

1, 3, 4, 7

Complete the 1st 4 rows

10.

Negative powers are the result of repeated division.

Examples

Write each expression using a positive exponent.

1.
$$6^{-3}$$

2.
$$a^{-5}$$

$$6^{-3} = \frac{1}{6^3}$$

$$a^{-5} = \frac{1}{a^5}$$

Definition of negative ex

Got it? Do these problems to find out.

a.
$$7^{-2}$$

b.
$$b^{-4}$$

d.
$$m^{-3}$$

Examples

Write each fr

Examples

Write each fraction as an expression using a negative expone other than -1.

Definition of negative exponent

Definitio exponen

 $=6^{-2}$

Definitio negative

Got it? Do these problems to find out.

Chapter 1 Real Numbers

5	³ •	5 ⁻⁵	=	5 ³	+	(-5)

Product of Powers

$$= 5^{-2}$$

= $\frac{1}{5^{2}}$ or $\frac{1}{25}$

Simplify.

Write using positive exponents. Simplify.

7.
$$\frac{w^{-1}}{w^{-4}}$$

7.
$$\frac{w^{-1}}{w^{-4}}$$

$$\frac{w^{-1}}{w^{-4}} = w^{-1 - (-4)}$$

$$= w^{(-1) + 4} \text{ or } w^3$$

Quotient of Powers

Subtract the exponents.

Got it? Do these problems to find out.

j.
$$3^{-8} \cdot 3^2 = 3^{-8+2} = 3^{-5} - \frac{1}{3^6} \text{ k.}$$
 $\frac{11^2}{11^4} = 11^{-2} - \frac{1}{3^6} = 11^{-2} - \frac{1}{3^6} = 11^{-2}$

1.
$$n^9 \cdot n^{-4} = n^{9 + (-4)} = n^{-4}$$

$$\frac{b^{-4}}{b^{-7}} = \frac{b^{-4}}{b^{-7}} = \frac{b^{-4}}{b^{-7}}$$

Lesson 5 Nega

Write each expression using a positive exponent. (Examples 1 and 2)

1.
$$2^{-4} = \frac{1}{2^4}$$

1.
$$2^{-4} = \frac{1}{2^4}$$
 2. $4^{-3} = \frac{1}{4^3}$ 3. $a^{-4} = \frac{1}{a^4}$ 4. $g^{-7} = \frac{1}{g^7}$

3.
$$a^{-4} = \frac{1}{a^4}$$

4.
$$g^{-7} = \frac{1}{g^7}$$

Write each fraction as an expression using a negative exponent other than -1.

(Examples 3 and 4)

5.
$$\frac{1}{3^4} = 3^{-4}$$

6.
$$\frac{1}{m^5} = m^{-5}$$

5.
$$\frac{1}{3^4} = 3^{-4}$$
 | 6. $\frac{1}{m^5} = m^{-5}$ | 7. $\frac{1}{16} = 4^{-2} \text{ or } 2^{-4}$ | 8. $\frac{1}{49} = 7^{-2}$

8.
$$\frac{1}{49} = 7^{-2}$$

9. An American green tree frog tadpole is about 0.00001 kilometer in length when it hatches. Write this decimal as a power of 10.

rengui when it nateries. Write this decimal as a power or io.

(Example 5) 10⁻⁵

10.
$$3^{-3} \cdot 3^{-2} = \frac{1}{243}$$

11.
$$r^{-7} \cdot r^3 = \frac{1}{r^4}$$

12.
$$\frac{p^{-2}}{p^{-12}} = \frac{10}{p^{-10}}$$

13. Building on the Essential Question How are negative exponents and positive exponents related?

Sample answer: Negative exponents are the result of repeated division and positive exponents are the result of repeated multiplication. You can rewrite an expression with a negative exponent to an expression with a positive exponent by using the multiplicative inverse.

Rate Yourself!

How well do you understand understand negative exponents? Circle the image that applies.

Clear

Somewhat Clear Not So Clear

re help, go online to

Independent Practice

Go online for Step-by-S

Write each expression using a positive exponent. (Examples 1 and 2)

1. $7^{-10} = \frac{1}{7^{10}}$ 2. $(-5)^{-4} = \frac{1}{(-5)^4}$ 3. $g^{-7} = \frac{1}{g^7}$ 4. $w^{-13} = \frac{1}{g^7}$

1.
$$7^{-10} = \frac{1}{7^{10}}$$

2.
$$(-5)^{-4} = \frac{1}{(-5)^4}$$

3.
$$g^{-7} = \frac{1}{g^7}$$

4.
$$w^{-13}$$

Write each fraction as an expression using a negative exponent other than -1.

(Examples 3 and 4)

5.
$$\frac{1}{12^4} = 12^{-4}$$

5.
$$\frac{1}{12^4} = \frac{12^{-4}}{12^5} = \frac{1}{(-5)^7} = \frac{1}{(-5)^7} = \frac{1}{125} = \frac{5^{-3}}{125} = \frac{1}{125} = \frac{1}{1$$

7.
$$\frac{1}{125} = 5^{-3}$$

8.
$$\frac{1}{1,024}$$

9. The table shows different metric measurements. Write each decimal

Measurem

9. The table shows different metric measurements. Write each decimal as a power of 10. (Example 5) 10^{-1} , 10^{-2} , 10^{-3} , 10^{-6}

Measurement	Va
Decimeter	0.1
Centimeter	0.01
Millimeter	0.00
Micrometer	0.00

10. STEM An atom is a small unit of matter. A small atom measures about 0.000000001 meter. Write the decimal as a power of 10.

(Example 5)

$$10^{-10}$$

Simplify. (Examples 6 and 7)

11.
$$2^{-3} \cdot 2^{-4} = \frac{1}{128}$$
 | 12. $s^{-5} \cdot s^{-2} = \frac{1}{s^7}$ | 13. $y^{-1} \cdot y^4 = y^3$ | 14. $(3a)(a^{-3}) = \frac{1}{a^2}$

12.
$$s^{-5} \cdot s^{-2} = \frac{1}{s^7}$$

14.
$$(3a)(a^{-3}) = \frac{1}{a}$$

15.
$$\frac{3^{-1}}{3^{-5}} = 81$$

16.
$$\frac{a^{-4}}{a^{-6}} = a^2$$

16.
$$\frac{a^{-4}}{a^{-6}} = a^2$$
 17. $\frac{y^{-6}}{y^{-10}} = y^4$ 18. $\frac{z^{-4}}{z^{-8}} = z^4$

18.
$$\frac{z^{-4}}{z^{-8}} = z^4$$

The mass of a molecule of penicillin is 10^{-18} kilogram and the mass of a molecule of insulin is 10^{-23} kilogram. How many times greater is the mass of a molecule of penicillin than the mass of a molecule of

10⁵ or 100.000 times

insulin?

20. Dustify Conclusions A common flea that is 2^{-4} inch long can jump about 2^3 inches high. About how many times its body size can a flea jump? Explain your reasoning.

 2^7 or 128 times; $2^3 \div 2^{-4} = 2^{3 - (-4)}$ or 2^7

H.O.T. Problems Higher Order Thinking

21. Identify Structure Without evaluating, order 11⁻³, 11², and 11⁰ from least to greatest. Explain your reasoning.

11⁻³, 11⁰, 11²; Sample answer: The exponents in order from least to

greatest are -3, 0, 2.

22. Identify Structure Write an expression with a negative exponent that

has a value between 0 and $\frac{1}{2}$. Sample answer: 3^{-2} , $3^{-2} = \frac{1}{3^2}$ or $\frac{1}{9}$

23. Persevere with Problems Select several fractions between 0 and 1. Find the value of each fraction after it is raised to the -1 power. Explain the relationship between the -1 power and the original fraction.

Sample answer: $\left(\frac{1}{2}\right)^{-1} = 2$, $\left(\frac{34}{43}\right)^{-1} = \frac{43}{34}$, $\left(\frac{56}{65}\right)^{-1} = \left(\frac{65}{56}\right)$; When you raise a fraction to the -1 power, it is the same as finding the reciprocal of the fraction.

24. Reason Abstractly For each power, write an equivalent multiplication expression with two factors. The first factor should have a positive exponent and the second factor should have a negative exponent. Sample answers are given.

a.
$$10^4 = 10^6 \cdot 10^{-2}$$

b.
$$8^2 = 8^5 \cdot 8^{-3}$$

c.
$$x^7 = x^{12} \cdot x^{-5}$$

