2-7 Parent Functions and Transformation

Identify the type of function represented by each graph.

a.

The graph is in the shape of a V. The graph represents an absolute value function. b.

The graph is a horizontal line that crosses the *y*-axis at 4. The graph represents a constant function.

linear

GuidedPractice

1A.

quadratic

Check Your Understanding

= Step-by-Step Solutions begin on page R1-

Example 1 Identify the type of function represented by each graph.

1.

linear

absolute value

Transformations Transformations of a parent graph may appear in a different location, flip over an axis, or appear to have been stretched or compressed. The transformed graph may resemble the parent graph, or it may not.

A translation moves a figure up, down, left, or right.

- When a constant k is added to or subtracted from a parent function, the result $f(x) \pm k$ is a translation of the graph up or down.
- When a constant h is added to or subtracted from x before evaluating a parent function, the result, f(x ± h), is a translation left or right.

Example 2 Describe and Graph Translations

Describe the translation in y = |x| + 2. Then graph the function.

The graph of y = |x| + 2 is a translation of the graph of y = |x| up 2 units.

Example 2

SENSE-MAKING Describe the translation in each function. Then graph the function.

3.
$$y = x^2 - 4$$

4.
$$y = |x + 1|$$

3, 4. S

A reflection flips a figure over a line called the line of reflection.

- When a parent function is multiplied by -1, the result -f(x) is a reflection of the g in the x-axis.
- When only the variable is multiplied by -1, the result f(-x) is a reflection of the g_1 in the y-axis.

Example 3 Describe and Graph Reflections

Describe the reflection in $y = -x^2$. Then graph the function.

The graph of $y = -x^2$ is a reflection of the graph of $y = x^2$ in the *x*-axis.

Example 3 Describe the reflection in each function. Then graph the function.

5.
$$y = -|x|$$

$$y = (-x)$$

Additional Answers

5. reflection of the graph of y = |x| across the *x*-axis

6. reflection of the graph of $y = x^2$ across the *y*-axis

Example 4 Describe and Graph Dilations

Describe the dilation in y = 4x. Then graph the function.

The graph of y = 4x is a dilation of the graph of y = x. The slope of the graph of y = 4x is steeper than that of the graph of y = x.

Example 4 Describe the dilation in each function. Then graph the function.

7.
$$y = \frac{3}{5}x$$

8.
$$y = 3x^2$$

7. A vertical compression of the graph of y = x; the slope is not as steep as that of y = x.

8. The dilation stretches the graph of $y = x^2$ vertically.

Real-World Example 5 Identify Transformations

LANDSCAPING Ethan is going to add a brick walkway around the perimeter of his vegetable garden. The area of the walkway can be represented by the function $f(x) = 4(x + 2.5)^2 - 25$. Describe the transformations in the function. Then graph the function.

The graph of $f(x) = 4(x + 2.5)^2 - 25$ is a combination of transformations of the parent graph $f(x) = x^2$. Determine how each transformation affects the parent graph.

$$f(x) = 4(x + 2.5)^2 - 25$$

- + 2.5 translates $f(x) = x^2$ left 2.5 units.
- -25 translates $f(x) = x^2$ down 25 units.
- 4 stretches $f(x) = x^2$ vertically.

Lesson 2-7

9. The function is a dilation and translation. The graph of $f(x) = \frac{1}{2}|x - 12|$ compresses the graph f(x) = |x| vertically and translates it 12 units to the right.

Example 5

9. FOOD The manager of a coffee shop is randomly checking coffee drinks prepared by employees to ensure that the correct amount of coffee is in each cup. Each 12-ounce drink should contain half coffee and half steamed milk. The amount of coffee by which each drink varies can be represented by $f(x) = \frac{1}{2}|x - 12|$. Describe the transformations in the function. **See Chapter 2 Answer Appendix.**

ConceptSummary Transformations of Functions	
Transformation	Change to Parent Graph
Translation $f(x + h), h > 0$	Translates graph h units left.
f(x-h), h>0	Translates graph h units right.
f(x)+k,k>0	Translates graph k units up.
f(x)-k,k>0	Translates graph k units down.
Reflection $-f(x)$ $f(-x)$	Reflects graph in the x-axis. Reflects graph in the y-axis.
Dilation $a \cdot f(x), a > 1$ $a \cdot f(x), 0 < a < 1$ $f(bx), b > 1$ $f(bx), 0 < b < 1$	Stretches graph vertically. Compresses graph vertically Compresses graph horizontally. Stretches graph horizontally.

Example 1 Identify the type of function represented by each graph.

10.

constant

11)

quadratic

12.

absolute value 13.

linear

Example 3

Describe the translation in each function. Then graph the function. 14-19. See margin.

14.
$$y = x^2 + 4$$

15.
$$y = |x| - 3$$

16.
$$y = x - 1$$

17.
$$y = x + 2$$

18.
$$y = (x - 5)^2$$

19.
$$y = |x + 6|$$

Describe the reflection in each function. Then graph the function.

20–25. See Chapter 2

Answer Appendix.

20.
$$y = -x$$

21.
$$y = -x^2$$

22.
$$y = (-x)^2$$

23.
$$y = |-x|$$

24.
$$y = -|x|$$

25.
$$y = (-x)$$

Example 4 Describe the dilation in each function. Then graph the function.

26–31. See Chapter 2

Answer Appendix.

26.
$$y = (3x)^2$$

27.
$$y = 6x$$

28.
$$y = 4|x|$$

29.
$$y = |2x|$$

30.
$$y = \frac{2}{3}x$$

31.
$$y = \frac{1}{2}x^2$$

Example 5 32. CSS SENSE-MAKING A non-impact workout can burn up to 7.5 Calories per minute. The equation to represent how many Calories a person burns after m minutes of the workout is C(m) = 7.5m. Identify the transformation in the function. Then graph the function. **See Chapter 2 Answer Appendix**.

15. translation of the graph of y = |x| down 3 units

17. translation of the graph of y = x up 2 units or left 2 units

18. translation of the graph of $y = x^2$ right 5 units

19. translation of the graph of y = |x| left 6 units

16. translation of the graph of y = x down 1 unit or right 1 unit

20. reflection of the graph of y = x across the x-axis

22. reflection of the graph of $y = x^2$ across the *y*-axis

21. reflection of the graph of $y = x^2$ across the *x*-axis

23. reflection of the graph of y = |x| across the *y*-axis

24. reflection of the graph of y = |x| across the *x*-axis

26. horizontal compression of the graph of $y = x^2$

25. reflection of the graph of y = x across the *y*-axis

27. vertical expansion of the graph of y = x; The slope is steeper than that of y = x.

28. The dilation stetches the graph of y = |x| vertically.

 The dilation compresses the graph of y = |x| horizontally.

30. The dilation compresses the graph of y = x vertically; the slope is not as steep as that of y = x.

31. vertical compression of the graph of $y = x^2$

32. The graph is a dilation of the graph of y = x. The dilation stretches the graph vertically.

