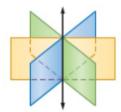

3-4 Systems of Equations in Three Variables

Systems in Three Variables Like systems of equations in two variables, systems in three variables can have one solution, infinite solutions, or no solution. A solution of such a system is an ordered triple (x, y, z).

The graph of an equation in three variables is a three-dimensional graph in the shape of a plane. The graphs of a system of equations in three variables form a system of planes.

One Solution


The three individual planes intersect at a specific point.

Infinitely Many Solutions

The planes intersect in a line.

Every coordinate on the line represents a solution of the system.

The planes intersect in the same plane.

Every equation is equivalent. Every coordinate in the plane represents a solution of the system.

No Solution There are no points in common with all three planes.

Example 1 A System with One Solution

Solve the system of equations.

$$3x - 2y + 4z = 35$$

 $-4x + y - 5z = -36$
 $5x - 3y + 3z = 31$

The coefficient of 1 in the second equation makes y a good choice for elimination.

Step 1 Eliminate one variable by using two pairs of equations.

$$3x - 2y + 4z = 35 \\
-4x + y - 5z = -36$$

$$-4x + y - 5z = -36$$

$$5x - 3y + 3z = 31$$

$$3x - 2y + 4z = 35 \\
(+) -8x + 2y - 10z = -72 \\
-5x - 6z = -37$$

$$-12x + 3y - 15z = -108 \\
(+) 5x - 3y + 3z = 31 \\
(+) 5x - 3y + 3z = 31 \\
(-7x - 12z = -77)$$
Equation 1
$$(+) -8x + 2y - 10z = -72 \\
(+) -8x + 2y - 10z = -72 \\
(+) -8x + 2y - 10z = -72 \\
(-) -5x - 6z = -37$$
Equation 2 × 3
$$(+) 5x - 3y + 3z = 31 \\
(-) -7x - 12z = -77$$

The y-terms in each equation have been eliminated. We now have a system of two equations and two variables, x and z.

Step 2 Solve the system of two equations.

Use substitution to solve for z.

$$-5x - 6z = -37$$
 Equation with two variables
 $-5(-1) - 6z = -37$ Substitution
 $5 - 6z = -37$ Multiply.
 $-6z = -42$ Subtract 5 from each side.
 $z = 7$ Divide each side by -6 .

The result is x = -1 and z = 7.

Step 3 Substitute the two values into one of the original equations to find y.

$$-4x + y - 5z = -36$$
 Equation 2
 $-4(-1) + y - 5(7) = -36$ Substitution
 $4 + y - 35 = -36$ Multiply.
 $y = -5$ Add 31 to each side.

Example 2 No Solution and Infinite Solutions

Solve each system of equations.

a.
$$5x + 4y - 5z = -10$$

 $-4x - 10y - 8z = -16$
 $6x + 15y + 12z = 24$

Eliminate x in the second two equations.

$$-4x - 10y - 8z = -16$$
 Multiply by 3. $-12x - 30y - 24z = -48$
 $6x + 15y + 12z = 24$ Multiply by 2. $(+) 12x + 30y + 24z = 48$ $0 = 0$

The equation 0 = 0 is always true. This indicates that the last two equations represent the same plane. Check to see if this plane intersects the first plane.

$$5x + 4y - 5z = -10$$
 Multiply by 4. $20x + 16y - 20z = -40$ $-4x - 10y - 8z = -16$ Multiply by 5. $(+) -20x - 50y - 40z = -80$ $-34y - 60z = -120$

The planes intersect in a line. So, there are an infinite number of solutions.

b.
$$-6a + 9b - 12c = 21$$

 $-2a + 3b - 4c = 7$
 $10a - 15b + 20c = -30$

Eliminate a in the first two equations.

$$-6a + 9b - 12c = 21$$

 $-2a + 3b - 4c = 7$ Multiply by -3 . $-6a + 9b - 12c = 21$
 $(+) 6a - 9b + 12c = -21$
 $0 = 0$

The equation 0 = 0 is always true. This indicates that the first two equations represent the same plane. Check to see if this plane intersects the last plane.

$$-2a + 3b - 4c = 7$$
 Multiply by 5. $-10a + 15b - 20c = 35$
 $(+) 10a - 15b + 20c = -30$ $(+) 10a - 15b + 20c = -30$

The equation 0 = 5 is never true. So, there is no solution of this system.

4.
$$-4r - s + 3t = -3r + 2s - t = 3$$

 $r + 3s - 5t = 29$

4.
$$-4r - s + 3t = -9$$
 $3r + 2s - t = 3$ $r + 3s - 5t = 29$ **5.** $3x + 5y - z = 12$ $-2x - 3y + 5z = 14$ $-5a + b - 4c = -51$ $-6a - 8b + c = 22$

solutions

$$2a - 3b + 5c = 58$$

 $-5a + b - 4c = -51$
 $-6a - 8b + a = 22$

4. (-2, 2, -5)

5. infinite

1.
$$(-2, -3, 5)$$

2. $(4, -6, 1)$
1. $-3a - 4b + 2c = 28$
 $a + 3b - 4c = -31$
 $2a + 3c = 11$

3.(-4,3,6)

2.
$$3y - 5z = -23$$

 $4x + 2y + 3z = 7$
 $-2x - y - z = -3$

3.
$$3x + 6y - 2z = -6$$

 $2x + y + 4z = 19$
 $-5x - 2y + 8z = 62$

$$-3a - 4b + 2c = 28$$

$$\alpha + 3b - 4c = -31$$

$$-\frac{3}{3}(a-4)b+2c=28$$

$$-\frac{3}{4}(a-4)b-12c=-0.3$$

$$-\frac{2}{6}(a-1)c=-0.5$$

$$-\frac{2}{6}(a-1)c=-0.5$$

$$6 + 3b - 4c = -3) = x - 2$$

$$6 + 3c = 11$$

$$2a$$

$$\frac{-2\alpha - 6b + 8c = 62}{-2\alpha + 3c = 11} = \frac{-6b + 1/c = 73}{-6b + 1/c}$$

GuidedPractice

6000 at 10%; 18,000 at 8%; 26,000 at 12%

3. Ms. Garza invested \$50,000 in three different accounts. She invested three times as much money in an account that paid 8% interest than an account that paid 10% interest. The third account earned 12% interest. If she earned a total of \$5160 in interest in a year, how much did she invest in each account?

Example 3	7. DOWNLOADING Heather downloaded some television shows. A sitcom uses 0.3 gigabyte of memory; a drama, 0.6 gigabyte; and a talk show, 0.6 gigabyte. She downloaded 7 programs totaling 3.6 gigabytes. There were twice as many episodes of the drama as the sitcom.
	a. Write a system of equations for the number of episodes of each type of show.
	b. How many episodes of each show did she download?

Examples 1-2 Solve each system of equations.

8.
$$-5x + y - 4z = 60$$

 $2x + 4y + 3z = -12$
 $6x - 3y - 2z = -52$
 $(-8, 4, -4)$

11.
$$4r + 6s - t = -18$$

 $3r + 2s - 4t = -24$
 $-5r + 3s + 2t = 15$
(-2, -1, 4)

14.
$$8x + 3y + 6z = 43$$

 $-3x + 5y + 2z = 32$
 $5x - 2y + 5z = 24$

17.
$$2x - y + z = 1$$

 $x + 2y - 4z = 3$
 $4x + 3y - 7z = -8$
no solution

9
$$4a + 5b - 6c = 2$$

 $-3a - 2b + 7c = -15$
 $-a + 4b + 2c = -13$
(-3, -2, -4)

12.
$$-2x + 15y + z = 44$$

 $4x + 3y + 3z = 18$
 $-3x + 6y - z = 8$

15.
$$\begin{array}{l}
\textbf{no solution} \\
-6x - 5y + 4z = 53 \\
5x + 3y + 2z = -11 \\
8x - 6y + 5z = 4 \\
(-4, -1, 6)
\end{array}$$

18.
$$\dot{x} + 2y = 12'$$

 $3y - 4z = 25$
 $x + 6y + z = 20$
(6, 3, -4)

10.
$$-2x + 5y + 3z = -25$$
 (8, -3, 2) $-4x - 3y - 8z = -39$ $6x + 8y - 5z = 14$

13.
$$4x + 2y + 6z = 13$$
 infinite solutions
 $-12x + 3y - 5z = 8$
 $-4x + 7y + 7z = 34$

16.
$$-9a + 3b - 2c = 61$$

 $8a + 7b + 5c = -138$
 $5a - 5b + 8c = -45$
 $(-8, -7, -5)$

19.
$$\dot{r} - 3s + \dot{t} = 4'$$

 $3r - 6s + 9t = 5$
 $4r - 9s + 10t = 9$
infinite solutions

20b. 7 swimmers placed third, 5 swimmers placed second, and 12 swimmers placed first.

Example 3

20c. The statement is false because when you solve for second place, you get a negative as an answer and you cannot have a negative person.

20. CGS SENSE-MAKING A friend e-mails you the results of a recent high school swim placed first. meet. The e-mail states that 24 individuals placed, earning a combined total of 53 points. First place earned 3 points, second place earned 2 points, and third place earned 1 point. There were as many first-place finishers as second- and third-place finishers combined.

- **a.** Write a system of three equations that represents how many people finished in each place. x + y + z = 24, 3x + 2y + z = 53, x = y + z
- b. How many swimmers finished in first place, in second place, and in third place?
- c. Suppose the e-mail had said that the athletes scored a combined total of 47 points. Explain why this statement is false and the solution is unreasonable.
- 21. AMUSEMENT PARKS Nick goes to the amusement park to ride roller coasters, bumper cars, and water slides 1 hour, the wait for the bumper