4.1 Extreme Values of Functions

What you'll learn about

Absolute (Global) Extreme Values

· Local (Relative) Extreme Values

· Finding Extreme Values

end points are used

DEFINITION Absolute Extreme Values

Let f be a function with domain D. Then f(c) is the

- (a) absolute maximum value on D if and only if $f(x) \le f(c)$ for all x in D.
- (b) absolute minimum value on D if and only if $f(x) \ge f(c)$ for all x in D.

EXAMPLE 1 Exploring Extreme Values

On $[-\pi/2, \pi/2]$, $f(x) = \cos x$ takes on a maximum value of 1 (once) and a minimum value of 0 (twice). The function $g(x) = \sin x$ takes on a maximum value of 1 and a minimum value of -1 (Figure 4.1). **Now try Exercise 1.**

 $y = \cos x$ $y = \sin x$ $-\frac{\pi}{2}$ 0 $\frac{\pi}{2}$

Please note that the endpoints were considered in the *closed* interval.

EXAMPLE 2 Exploring Absolute Extrema

The absolute extrema of the following functions on their domains can be seen in Figure 4.2.

	Function Rule	Domain D	Absolute Extrema on D
(a)	$y = x^2$	$(-\infty, \infty)$	No absolute maximum. Absolute minimum of 0 at $x = 0$
(b)	$y = x^2$	10, 2	Absolute maximum of 4 at $x = 2$ Absolute minimum of 0 at $x = 0$
(c)	$y = x^2$	(0, 2]	Absolute maximum of 4 at $x = 2$ No absolute minimum.
(d)	$y = x^2$	(0, 2)	No absolute extrema.

Now try Exercise 3.

In Exercises 1-4, find the extreme values and where they occur.

1.

2.

- 1. Minima at (-2, 0) and (2, 0), maximum at (0, 2)
- 2. Local minimum at (-1, 0), local maximum at (1, 0)

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f has both a maximum value and a minimum value on the interval. (Figure 4.3)

Maximum and minimum at interior points

Maximum at interior point, minimum at endpoint

Minimum at interior point, maximum at endpoint

In Exercises 5-10, identify each x-value at which any absolute extreme value occurs. Explain how your answer is consistent with the Extreme Value Theorem. See page 195.

10.

DEFINITION Local Extreme Values

Let c be an interior point of the domain of the function f. Then f(c) is a

- (a) local maximum value at c if and only if $f(x) \le f(c)$ for all x in some open interval containing c.
- (b) local minimum value at c if and only if $f(x) \ge f(c)$ for all x in some open interval containing c.

A function f has a local maximum or local minimum at an endpoint c if the appropriate inequality holds for all x in some half-open domain interval containing c.

Note how relative extremas are considered around open intervals.

THEOREM 2 Local Extreme Values

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then

$$f'(c) = 0.$$

From this theorem, we are able to identify *critical points;*

DEFINITION Critical Point

A point in the interior of the domain of a function f at which f' = 0 or f' does not exist is a **critical point** of f.

Ex. recall the graph of f(x)=|x|...

EXAMPLE 3 Finding Absolute Extrema

Find the absolute maximum and minimum values of $f(x) = x^{2/3}$ on the interval

[-2, 3].

SOLUTION

closed - I Test

Test en

Solve Graphically Figure 4.5 suggests that f has an absolute maximum value of about 2 at x = 3 and an absolute minimum value of 0 at x = 0.

Confirm Analytically We evaluate the function at the critical points and endpoints and take the largest and smallest of the resulting values.

The first derivative

$$f'(x) = \frac{2}{3}x^{-1/3} = \frac{2}{3\sqrt[3]{x}}$$

has no zeros but is undefined at x = 0. The values of f at this one critical point and at the endpoints are

Critical point value:
$$f(0) = 0$$
;

Endpoint values:
$$f(-2) = (-2)^{2/3} = \sqrt[3]{4}$$
;

$$f(3) = (3)^{2/3} = \sqrt[3]{9}$$
.

We can see from this list that the function's absolute maximum value is $\sqrt[3]{9} \approx 2.08$, and occurs at the right endpoint x = 3. The absolute minimum value is 0, and occurs at the interior point x = 0.

$$y = x^{2/3}$$

Figure 4.5 (Example 3)

In Exercises 11-18, use analytic methods to find the extreme values of the function on the interval and where they occur. See page 195.

11.
$$f(x) = \frac{1}{x} + \ln x$$
, $0.5 \le x \le 4$

12.
$$g(x) = e^{-x}, -1 \le x \le 1$$

13.
$$h(x) = \ln(x+1), \quad 0 \le x \le 3$$

14.
$$k(x) = e^{-x^2}$$
, $-\infty < x < \infty$

15.
$$f(x) = \sin\left(x + \frac{\pi}{4}\right), \quad 0 \le x \le \frac{7\pi}{4}$$

16.
$$g(x) = \sec x$$
, $-\frac{\pi}{2} < x < \frac{3\pi}{2}$

17. $f(x) = x^{2/5}$, $-3 \le x < 1$

18. $f(x) = x^{3/5}$, $-2 < x \le 3$

17.
$$f(x) = x^{2/5}, -3 \le x < 1$$

18.
$$f(x) = x^{3/5}, -2 < x \le 3$$

$$T_{CS}+(x=0)$$
 and $x=3$.

$$(1) = 0$$
 $(\ln(4) = 1)$

In Exercises 19-30, find the extreme values of the function and where they occur. Min value 1 at

19.
$$y = 2x^2 - 8x + 9$$
 $x = 2$ 20. $y = x^3 - 2x + 4$

9.
$$y = 2x^2 - 8x + 9$$
 $x = 2$ 20. $y = x^3$

21.
$$y = x^3 + x^2 - 8x + 5$$

21.
$$y = x^3 + x^2 - 8x + 5$$
 22. $y = x^3 - 3x^2 + 3x - 2$ None

 $y' = 3x^{2} - 6x + 3 = (3x - 3)(x - 1)$ 3(x - 1)(x - 1) $5(x - 1)^{2} = 0$ $5(x - 1)^{2} = 0$ $5(x - 1)^{2} = 0$

$$3(x-1)(x-1)$$

 $= 0$

In Exercises 11–18, use analytic methods to find the extreme values of the function on the interval and where they occur. See page 195.

11.
$$f(x) = \frac{1}{x} + \ln x$$
, $0.5 \le x \le 4$

12.
$$g(x) = e^{-x}, -1 \le x \le 1$$

13.
$$h(x) = \ln(x+1), \quad 0 \le x \le 3$$

14.
$$k(x) = e^{-x^2}$$
, $-\infty < x < \infty$

15.
$$f(x) = \sin\left(x + \frac{\pi}{4}\right), \quad 0 \le x \le \frac{7\pi}{4}$$

16.
$$g(x) = \sec x$$
, $-\frac{\pi}{2} < x < \frac{3\pi}{2}$

17.
$$f(x) = x^{2/5}, -3 \le x < 1$$

18.
$$f(x) = x^{3/5}, -2 < x \le 3$$

of trains

$$h'(x) = \frac{1}{x+1} = 0$$

$$h(x) = \ln(xr1)$$
 $h(-1) = \ln(9)$
 $h(-1) = \ln(1) = 0$
 $h(9) = \ln(1) = 1$
 $\ln(3) = \ln(4) = 1$
 $\ln(3) = \ln(4) = 1$

15.
$$f(x) = \sin\left(x + \frac{\pi}{4}\right), \quad 0 \le x \le \frac{7\pi}{4}$$

V=X+47

17.
$$f(x) = x^{2/5}, -3 \le x < 1$$

$$f'(x) = \frac{2}{5} \times \frac{3}{5} = \frac{2}{5 \times 3} = 0$$

$$critical #5
$$= \frac{2}{5} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$

$$critical #5
$$= \frac{2}{5 \times 3} \times \frac{3}{5} = 0$$