

4.2 The Mean Value Theorem

THEOREM 3 Mean Value Theorem for Derivatives

If y = f(x) is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

Tangent parallel to chord

Slope
$$f'(c)$$

Slope $\frac{f(b) - f(a)}{b - a}$
 $y = f(x)$

Figure 4.10 Figure for the Mean Value Theorem.

$$c = 1$$
.

nterpret The tangent line to $f(x) = x^2$ at x = 1 has slope 2 and is parallel to t hord joining A(0, 0) and B(2, 4) (Figure 4.12).

Now try Exer

continued

THEOREM 3 Mean Value Theorem for Derivatives

If y = f(x) is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$f(b) - f(a)$$

EXAMPLE 2 Exploring the Mean Value Theorem

Explain why each of the following functions fails to satisfy the conditions of the Mean Value Theorem on the interval [-1, 1].

$$(\mathbf{a})f(x) = \sqrt{x^2} + 1$$

(b)
$$f(x) = \begin{cases} x^3 + 3 & \text{for } x < 1 \\ x^2 + 1 & \text{for } x \ge 1 \end{cases}$$

SOLUTION

THEOREM 3 Meath Value Theorem for Derivatives

If y = f(x) is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

In Exercises 1–8, (a) state whether or not the function satisfies the hypotheses of the Mean Value Theorem on the given interval, and (b) if it does, find each value of c in the interval (a, b) that satisfies $f'(c) = \frac{f(b) - f(a)}{b - a}.$ $f'(c) = \frac{f(b) - f(a)}{b - a}.$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

1.
$$f(x) = x^2 + 2x - 1$$
 on $[0, 1]$

2.
$$f(x) = x^{2/3}$$
 on [0, 1]

3.
$$f(x) = x^{1/3}$$
 on $[-1,1]$ No. There is a vertical tangent at $x = 0$.

4.
$$f(x) = |x - 1|$$
 on $[0, 4]$ No. There is a corner at $x = 1$.
5. $f(x) = \sin^{-1}x$ on $[-1, 1]$
6. $f(x) = \ln(x - 1)$ on $[2, 4]$

5.
$$f(x) = \sin^{-1}x$$
 on $[-1, 1]$

6.
$$f(x) = \ln(x - 1)$$
 on [2, 4]

8.
$$f(x) = \begin{cases} \sin^{-1} x, & -1 \le x < 1 \\ x/2 + 1, & 1 \le x \le 3 \end{cases}$$
 on $[-1, 3]$

8.
$$f(x) = \begin{cases} \sin^{-1} x, & -1 \le x < 1 \\ x/2 + 1, & 1 \le x \le 3 \end{cases}$$
 on $[-1, 3]$

No. The split function is discontinuous at x = 1.

In Exercises 1–8, (a) state whether or not the function satisfies the hypotheses of the Mean Value Theorem on the given interval, and (b) if it does, find each value of c in the interval (a, b) that satisfies the equation

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$
8.
$$f(x) = \begin{cases} \sin^{-1} x, & -1 \le x < 1 \\ x/2 + 1, & 1 \le x \le 3 \end{cases} \text{ on } [-1, 3]$$
No. The split function is discontinuous at $x = 1$.

- 1. $f(x) = x^2 + 2x 1$ on [0, 1] 2. $f(x) = x^{2/3}$ on [0, 1]
- 3. $f(x) = x^{1/3}$ on [-1,1]
- 4. f(x) = |x 1| on [0, 4] No. T
- 5. $f(x) = \sin^{-1}x$ on [-1, 1]
- 6. $f(x) = \ln(x 1)$ on [2, 4]

$$F'(x) = 2x + 2 \qquad F(x) = 1^{2} + 2(1) - 1$$

$$= (+2)^{2} + 2(1) - 1$$

$$= (+2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2} + 2(1) - 1$$

$$= (-2)^{2$$

EXAMPLE 3 Applying the Mean Value Theorem

Let $f(x) = \sqrt{1 - x^2}$, A = (-1, f(-1)), and B = (1, f(1)). Find a tangent to f in the interval (-1, 1) that is parallel to the secant AB.

SOLUTION

The function f (Figure 4.14) is continuous on the interval [-1, 1] and

$$f'(x) = \frac{-x}{\sqrt{1 - x^2}}$$

is defined on the interval (-1, 1). The function is not differentiable at x = -1 and x = 1, but it does not need to be for the theorem to apply. Since f(-1) = f(1) = 0, the tangent we are looking for is horizontal. We find that f' = 0 at x = 0, where the graph has the horizontal tangent y = 1.

COROLLARY 2 Functions with f' = 0 are Constant

If f'(x) = 0 at each point of an interval *I*, then there is a constant *C* for which f(x) = C for all x in *I*.

In Exercises 9 and 10, the interval $a \le x \le b$ is given. Let A = (a, f(a)) and B = (b, f(b)). Write an equation for

- (a) the secant line AB.
- (b) a tangent line to f in the interval (a, b) that is parallel to AB.

9.
$$f(x) = x + \frac{1}{x}$$
, $0.5 \le x \le 2$ (a) $y = \frac{5}{2}$ (b) $y = 2$

10.
$$f(x) = \sqrt{x-1}$$
, $1 \le x \le 3$

$$\leq x \leq 3$$

$$\varphi(b) = \varphi(2) = 2 + \frac{1}{2}$$

$$\varphi(a) = \varphi(.5) = .5 + 2$$

$$\varphi(a) = \varphi(a) = \varphi(a) = -2 + \frac{1}{2}$$