Graph Linear Inequalities The graph of a linear inequality is the set of points that represent all of the possible solutions of that inequality. An equation defines a **boundary**, which divides the coordinate plane into two **half-planes**.

The boundary may or may not be included in the solution. When it is included, the solution is a closed half-plane. When not included, the solution is an open half-plane.

KeyConcept Graphing Linear Inequalities

- Step 1 Graph the boundary. Use a solid line when the inequality contains \leq or \geq . Use a dashed line when the inequality contains < or >.
- Step 2 Use a test point to determine which half-plane should be shaded.
- Step 3 Shade the half-plane that contains the solution.

EXAMPLE 1 Graph an Inequality (< or >)

Graph
$$2y - 4x > 6$$
.

Step 1 Solve for *y* in terms of *x*.

$$2y - 4x > 6$$

$$2y - 4x + 4x > 4x + 6$$

$$2y > 4x + 6$$

$$\frac{2y}{2} > \frac{4x+6}{2}$$

$$y > 2x + 3$$

Original inequality

Add 4x to each side.

Simplify.

Divide each side by 2.

Simplify.

EXAMPLE 1

Graph an Inequality (< or >)

Step 2 Graph y = 2x + 3.

Since y > 2x + 3 does not include values when y = 2x + 3, the boundary is not included in the solution set. The boundary should be drawn as a dashed line.

Step 3 Select a point in one of the half-planes and test it. Let's use (0, 0).

$$y > 2x + 3$$

$$0 > 2(0) + 3$$

Original inequality

$$x = 0, y = 0$$

false

EXAMPLE 1

Graph an Inequality (< or >)

Since the statement is false, the half-plane containing the origin is not part of the solution. Shade the other half-plane.

Check Test a point in the other half-plane, for example, (-3, 1).

$$y > 2x + 3$$
 Original inequality $1 > 2(-3) + 3$ $x = -3$, $y = 1$

Since the statement is true, the half-plane containing (–3, 1) should be shaded. The graph of the solution is correct.

Answer:

EXAMPLE 2 Graph an Inequality (\leq or \geq)

Graph
$$x + 4y \ge 2$$
.

Step 1 Solve for *y* in terms of *x*.

$$x + 4y \ge 2$$

Original inequality

$$4y \ge -x + 2$$

Subtract x from both sides and simplify.

$$y \geq -\frac{1}{4}x + \frac{1}{2}$$

 $y \ge -\frac{1}{4}x + \frac{1}{2}$ Divide each side by 4.

EXAMPLE 2 Graph an Inequality (≤ or ≥)

Graph $y \ge -\frac{1}{4}x + \frac{1}{2}$. Because the inequality symbol is \ge , graph the boundary with a solid line.

Step 2 Select a test point. Let's use (2, 2). Substitute the values into the original inequality.

$$x + 4y \ge 2$$
 Original inequality $2 + 4(2) \ge 2$ $x = 2$ and $y = 2$ $10 \ge 2$ Simplify.

Step 3 Since the statement is true, shade the same half-plane.

Answer:

Examples 1-2 Graph each inequality. 1-6. See Ch. 5 Answer Appendix.

1.
$$y > x + 3$$

2.
$$y \ge -8$$

3.
$$x + y > 1$$

4.
$$y \le x - 6$$

5.
$$y < 2x - 4$$

4.
$$y \le x - 6$$
 5. $y < 2x - 4$ **6.** $x - y \le 4$

y > 1x + 3 m = 1 b=3 Test (0,0); Test (0,0); Tesx (4137) 374+3

Examples 1–2 Graph each inequality. 1–6. See Ch. 5 Answer Appendix.

1.
$$y > x + 3$$

2.
$$y \ge -8$$

4.
$$y \le x - 6$$

5.
$$y < 2x - 4$$
 6. $x - y \le 4$

3.
$$x + y > 1$$

6.
$$x - y \le 4$$

Examples 1-2 Graph each inequality. 1-6. See Ch. 5 Answer Appendix.

1.
$$y > x + 3$$

2.
$$y \ge -8$$

3.
$$x + y > 1$$

4.
$$y \le x - 6$$

4.
$$y \le x - 6$$
 5. $y < 2x - 4$

6.
$$x - y \le 4$$

$$3) \times + y = 1$$
 $-x = -x + 1$
 $m = -1$
 $m =$

Examples 1-2 Graph each inequality. 1-6. See Ch. 5 Answer Appendix.

1.
$$y > x + 3$$

2.
$$y \ge -8$$

3.
$$x + y > 1$$

4.
$$y \le x - 6$$

5.
$$y < 2x - 4$$

6.
$$x - y \le 4$$

