5.2 Definite Integrals

Q: What is the area enclosed between the graph and
the x axis in the closed interval [a,b] ?
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A: We could break it up into
rectangles, then add up all the
rectangles...
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Riemann sum for f on the interval [a, b].

The basic idea is, the smaller
the partitions, the more
accurate the area...
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This agruement can be molded into a limit,
and is given a new notation altogether;
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Upper limit of integration The flinction is the integrand.

2 b / x is the variable of integration.
Integral sign e /
f(x) dx

a When you find the value
of the integral, you have
evaluated the integral.
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Lower limit of integration

Integral of f from a to b



In Exercises 1-6, each c; is chosen from the kth subinterval of a
regular partition of the indicated interval into n subintervals of length

Ax. Express the limit as a definite integral.
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DEFINITION Area Under a Curve (as a Definite Integral)

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the area
under the curve y = f(x) from a to b is the integral of f from a to b,

b
A= f f(x) dx.
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We will get into the antiderivative, but we will first
approach this geometrically.

Also, we will be VERY careful when finding the area

b
J f(x) dx = (area above the x-axis) — (area below the x-axis).
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Finding Integrals by Signed Areas
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It is a fact (which we will revisit) that f(;r sin x dx = 2 (Figure 5.20). With that in-
formation, what you know about integrals and areas, what you know about graph-
ing curves, and sometimes a bit of intuition, determine the values of the following
integrals. Give as convincing an argument as you can for each value, based on the
graph of the function.
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I sin x dx = 2. (Exploration 1)
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THEOREM 2 The Integral of a Constant

If f(x) = ¢, where c is a constant, on the interval [a, b], then

b b
jf(x)dx=fcdx=c(b—a)_

y In Exercises 7-12, evaluate the integral.
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In Exercises 13-22, use the graph of the integrand and areas to
evaluate the integral.
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In Exercises 13-22, use the graph of the integrand and areas to
evaluate the integral.
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