5.2 Definite Integrals

Q: What is the area enclosed between the graph and the x axis in the closed interval [a,b]?

A: We could break it up into rectangles, then add up all the rectangles...

Riemann sum for f on the interval [a, b].

The basic idea is, the smaller the partitions, the more accurate the area...

This agruement can be molded into a limit, and is given a new notation altogether;

In Exercises 1–6, each c_k is chosen from the kth subinterval of a regular partition of the indicated interval into n subintervals of length Δx . Express the limit as a definite integral.

1.
$$\lim_{n \to \infty} \sum_{k=1}^{n} c_k^2 \Delta x$$
, [0, 2] $\int_0^2 x^2 dx$

2.
$$\lim_{n\to\infty} \sum_{k=1}^{n} (c_k^2 - 3c_k) \Delta x$$
, $[-7, 5]$ $\int_{-7}^{5} (x^2 - 3x) dx$

3.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{c_k} \Delta x$$
, [1, 4] $\int_{1}^{4} \frac{1}{x} dx$

4.
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{1-c_k} \Delta x$$
, [2, 3] $\int_2^3 \frac{1}{1-x} dx$

DEFINITION Area Under a Curve (as a Definite Integral)

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the area under the curve y = f(x) from a to b is the integral of f from a to b,

$$A = \int_{a}^{b} f(x) \, dx.$$

Inst semester..

Note for the eager ones in here;

We will get into the antiderivative, but we will first approach this geometrically.

Also, we will be VERY careful when finding the area

$$\int_{a}^{b} f(x) dx = \text{(area above the } x\text{-axis)} - \text{(area below the } x\text{-axis)}.$$

EXPLORATION 1 Finding Integrals by Signed Areas

It is a fact (which we will revisit) that $\int_0^{\pi} \sin x \, dx = 2$ (Figure 5.20). With that information, what you know about integrals and areas, what you know about graphing curves, and sometimes a bit of intuition, determine the values of the following integrals. Give as convincing an argument as you can for each value, based on the graph of the function.

1.
$$\int_{\pi}^{2\pi} \sin x \, dx = 2$$
 2. $\int_{0}^{2\pi} \sin x \, dx = 3$. $\int_{0}^{\pi/2} \sin x \, dx = 1$

$$4. \int_0^\pi (2 + \sin x) \, dx$$

$$5. \int_0^{\pi} 2\sin x \, dx$$

4.
$$\int_{0}^{\pi} (2 + \sin x) dx$$
 5. $\int_{0}^{\pi} 2 \sin x dx$ 6. $\int_{2}^{\pi+2} \sin (x - 2) dx$ 7. $\int_{-\pi}^{\pi} \sin u du$ 8. $\int_{0}^{2\pi} \sin (x/2) dx$ 9. $\int_{0}^{\pi} \cos x dx$

$$7. \int_{-\pi}^{\pi} \sin u \, du$$

8.
$$\int_0^{2\pi} \sin(x/2) dx$$

$$9. \int_0^\pi \cos x \, dx$$

$$\int_0^{\pi} \sin x \, dx = 2. \text{ (Exploration 1)}$$

THEOREM 2 The Integral of a Constant

If f(x) = c, where c is a constant, on the interval [a, b], then

$$\int_a^b f(x) dx = \int_a^b c dx = c(b - a).$$

In Exercises 7-12, evaluate the integral.

7.
$$\int_{-2}^{1} 5 dx$$
 15

9.
$$\int_{0}^{3} (-160) dt$$
 -480

11.
$$\int_{-2.1}^{3.4} 0.5 \, ds$$

8.
$$\int_{3}^{7} (-20) dx$$

10.
$$\int_{-4}^{-1} \frac{\pi}{2} d\theta = \frac{3\pi}{2}$$

12.
$$\int_{\sqrt{2}}^{\sqrt{18}} \sqrt{2} \, dr$$

In Exercises 13-22, use the graph of the integrand and areas to evaluate the integral.

13.
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$$
 21

15.
$$\int_{0}^{3} \sqrt{9-x^2} dx = \frac{9\pi}{2}$$

17.
$$\int_{-2}^{1} |x| dx = \frac{5}{2}$$

19.
$$\int_{-1}^{1} (2 - |x|) dx = 3$$

$$21. \int_{\pi}^{2\pi} \theta \ d\theta \quad \frac{3\pi^2}{2}$$

13.
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$$
 21 14. $\int_{1/2}^{3/2} (-2x + 4) dx$ 2

15.
$$\int_{-3}^{3} \sqrt{9 - x^2} \, dx = \frac{9\pi}{2}$$
 16.
$$\int_{-4}^{0} \sqrt{16 - x^2} \, dx = 4\pi$$

18.
$$\int_{-1}^{1} (1 - |x|) \, dx = 1$$

20.
$$\int_{-1}^{1} (1 + \sqrt{1 - x^2}) dx + \frac{\pi}{2}$$

22.
$$\int_{\sqrt{2}}^{5\sqrt{2}} r \, dr$$
 24

