5.4 The Fundamental Theorem of Calculus

THEOREM 4 The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a, b], then the function

$$F(x) = \int_{a}^{x} f(t) dt$$

has a derivative at every point x in [a, b], and

$$\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x).$$

This says two things;

- 1) ALL functions have an antiderivative.
- 2) derivatives and integration are inverses to each other.

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x). \tag{1}$$

EXAMPLE 1 Applying the Fundamental Theorem

Find

$$\frac{d}{dx} \int_{-\pi}^{x} \cos t \, dt \quad \text{and} \quad \frac{d}{dx} \int_{0}^{x} \frac{1}{1+t^2} \, dt$$

by using the Fundamental Theorem.

SOLUTION

$$\frac{d}{dx} \int_{-\pi}^{x} \cos t \, dt = \cos x \qquad \text{Eq. 1 with } f(t) = \cos t$$

$$\frac{d}{dx} \int_0^x \frac{1}{1+t^2} dt = \frac{1}{1+x^2}.$$
 Eq. 1 with $f(t) = \frac{1}{1+t^2}$

Now try Exercise 3.

WAIT...doesn't it matter where the integration starts for these...?

$$\frac{dF}{dx} = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt}{h}$$

$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t) dt}{h}$$

$$= \lim_{h \to 0} \left[\frac{1}{h} \int_{x}^{x+h} f(t) dt \right].$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

$$= \lim_{h \to 0} f(c), \text{ where } d$$

A: nope.

$$\frac{dF}{dx} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

where c lies between x and x + h.

What happens to c as h goes to zero? As x + h gets closer to x, it carries c along with it like a bead on a wire, forcing c to approach x. Since f is continuous, this means that f(c)approaches f(x):

$$\lim_{h \to 0} f(c) = f(x).$$

BTW, "a" is a constant. BUT what if it's not...?

Also, what if there's some weird stuff going on in the limits of intergration...?

In Exercises 1–20, find dy/dx.

1.
$$y = \int_0^x (\sin^2 t) dt = \sin^2 x$$

1.
$$y = \int_{0}^{x} (\sin^2 t) dt + \sin^2 x$$
 2. $y = \int_{2}^{x} (3t + \cos t^2) dt$

3.
$$y = \int_0^x (t^3 - t)^5 dt$$

4.
$$y = \int_{-2}^{x} \sqrt{1 + e^{5t}} dt$$

5.
$$y = \int_{2}^{x} (\tan^{3} u) du$$

6.
$$y = \int_4^x e^u \sec u \, du = e^x \sec x$$

7.
$$y = \int_{7}^{x} \frac{1+t}{1+t^2} dt$$

8.
$$y = \int_{-\pi}^{x} \frac{2 - \sin t}{3 + \cos t} dt \frac{2 - \sin x}{3 + \cos x}$$

EXAMPLE 2 The Fundamental Theorem with the Chain Rule

Find dy/dx if $y = \int_1^{x^2} \cos t \, dt$.

SOLUTION

The upper limit of integration is not x but x^2 . This makes \sqrt{a} composite of

$$y = \int_{1}^{u} \cos t \, dt \quad \text{and} \quad u = x^{2}.$$

We must therefore apply the Chain Rule when finding dy/dx.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \left(\frac{d}{du} \int_{1}^{u} \cos t \, dt\right) \cdot \frac{du}{dx}$$

$$= \cos u \cdot \frac{du}{dx}$$

$$= \cos(x^{2}) \cdot 2x$$

$$= 2x \cos x^{2}$$

Now try Exercise 9.

(g(x))

9.
$$y = \int_{0}^{x^{2}} e^{t^{2}} dt$$

10. $y = \int_{6}^{x^{2}} \cot 3t \, dt \, (2x \cot 3x^{2})$

11. $y = \int_{2}^{5x} \frac{\sqrt{1+u^{2}}}{u} \, du$

12. $y = \int_{\pi}^{\pi-x} \frac{1+\sin^{2}u}{1+\cos^{2}u} \, du$

13. $y = \int_{x}^{6} \ln(1+t^{2}) \, dt$

14. $y = \int_{x}^{7} \sqrt{2t^{4}+t+1} \, dt$

12. $y = \int_{\pi}^{\pi-x} \frac{1+\sin^{2}u}{1+\cos^{2}u} \, du$

13. $y = \int_{x}^{6} \ln(1+t^{2}) \, dt$

14. $y = \int_{x}^{7} \sqrt{2t^{4}+t+1} \, dt$

12. $y = \int_{\pi}^{\pi-x} \frac{1+\sin^{2}(\pi-x)}{1+\cos^{2}(\pi-x)} \, du$

13. $y = \int_{x}^{6} \ln(1+t^{2}) \, dt$

14. $y = \int_{x}^{7} \sqrt{2t^{4}+t+1} \, dt$

15. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

16. $y = \int_{\pi}^{\pi-x} \frac{1+\sin^{2}(\pi-x)}{1+\cos^{2}(\pi-x)} \, du$

17. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

18. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

19. $y = \int_{x}^{\pi} \frac{1+\sin^{2}(\pi-x)}{1+\cos^{2}(\pi-x)} \, du$

11. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

12. $y = \int_{\pi}^{\pi-x} \frac{1+\sin^{2}(\pi-x)}{1+\cos^{2}(\pi-x)} \, du$

13. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

14. $y = \int_{x}^{\pi} \sqrt{2t^{4}+t+1} \, dt$

15. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

16. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

17. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

18. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

19. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

10. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

11. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

12. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

13. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

14. $y = \int_{x}^{\pi} \sqrt{2t^{4}+t+1} \, dt$

15. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

16. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

17. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

18. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

19. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

10. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

11. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

12. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

13. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

14. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

15. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$

16. $y = \int_{x}^{\pi} \ln(1+t^{2}) \, dt$