5.4 The Fundamental Theorem of Calculus

THEOREM 4 The Fundamental Theorem of Calculus, Part 1

If £ is continuous on [a, b], then the function

nﬂ=fﬂom

has a derivative at every point x in [a, b], and

dFFd

Ix  dr af(r)dr=f(r).

This says two things;
1) ALL functions have an antiderivative.

2) derivatives and integration are inverses to each other.




%ff(r)dr=f(x). (1)

EXAMPLE 1 Applying the Fundamental Theorem

Find
d [ d " 1
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by using the Fundamental Theorem.
SOLUTION
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Now try Exercise 3.

WAIT...doesn't it matter where the integration starts for these...?



Apply the definition of the derivative directly to th
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What happens to ¢ as h goes to z.ero?A.s x + h gets closer to x, it carries ¢ along with it like
a bead on a wire, forcing ¢ to approach x. Since f is continuous, this means that f(c)
approaches f(x):
;Iai'%f(c) = f(x). -

BTW, "a" is a constant. BUT what if it's not...?

Also, what if there's some weird stuff going on
in the limits of intergration...?



In Exercises 1-20, find dy/dx.
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EXAMPLE 2 The Fundamental Theorem with the Chain Rule

Find dy/dx if y= [" cos tdt. A
ind dy/dx if y= [ cos x_€ (g cx))

SOLUTION

- = . . . 2 . - .
The upper limit of integration is not x but x~. This makes ya compositd ‘of
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We must therefore apply the Chain Rule when finding dy/dx.
du
= COS U+ .
dx
= ’ 2\ . D
= cos (x¢) « 2x
= 2x cos x2 Now try Exercise 9.
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