If 9=b, Then 02 = b2

6-7 Solving Radical Equations and Inequalities

KeyConcept Solving Radical Equations

- Step 1 Isolate the radical on one side of the equation.
- Step 2 Raise each side of the equation to a power equal to the index of the radical to eliminate the radical.
- Step 3 Solve the resulting polynomial equation. Check your results.

Example 1 Solve Radical Equations

$$\sqrt{x+2}+4=7$$
 Original equation

$$\sqrt{x+2} = 3$$
 Subtract 4 from each side to isolate the radical.

$$(\sqrt{x+2})^2 = 3^2$$
 Square each side to eliminate the radical.

$$x + 2 = 9$$
 Find the squares.

$$x = 7$$
 Subtract 2 from each side.

CHECK
$$\sqrt{x+2} + 4 = 7$$
 Original equation

$$\sqrt{7+2}+4\stackrel{?}{=}7$$
 Replace x with 7.

$$7 = 7$$
 Simplify.

b.
$$\sqrt{x-12} = 2 - \sqrt{x}$$

$$\sqrt{x-12} = 2 - \sqrt{x}$$
$$(\sqrt{x-12})^2 = (2 - \sqrt{x})^2$$
$$x - 12 = 4 - 4\sqrt{x} + x$$
$$-16 = -4\sqrt{x}$$
$$4 = \sqrt{x}$$
$$16 = x$$

CHECK
$$\sqrt{x-12} = 2 - \sqrt{x}$$

 $\sqrt{16-12} \stackrel{?}{=} 2 - \sqrt{16}$
 $\sqrt{4} \stackrel{?}{=} 2 - 4$
 $2 \neq -2$ X

Example 2 Solve a Cube Root Equation

Solve $2(6x-3)^{\frac{1}{3}}-4=0$.

Check Your Understanding

Examples 1-2 Solve each equation.

1.
$$\sqrt{x-4}+6=10$$
 20

3.
$$8 - \sqrt{x + 12} = 3$$
 13

$$\sqrt[3]{x-2} = 3$$
 29

7.
$$(4y)^{\frac{1}{3}} + 3 = 5$$
 2

9.
$$\sqrt{y} - 7 = 0$$

11.
$$5 + \sqrt{4y - 5} = 12$$

2.
$$\sqrt{x+13}-8=-2$$
 23

4.
$$\sqrt{x-8} + 5 = 7$$
 12

6.
$$(x-5)^{\frac{1}{3}}-4=-2$$
 13

8.
$$\sqrt[3]{n+8}-6=-3$$
 19

10.
$$2 + 4z^{\frac{1}{2}} = 0$$

12.
$$\sqrt{2t-7} = \sqrt{t+2}$$

- **13. CESS REASONING** The time T in seconds that it takes a pendulum to make a complete swing back and forth is given by the formula $T = 2\pi\sqrt{\frac{L}{g}}$, where L is the length of the pendulum in feet and g is the acceleration due to gravity, 32 feet per second squared.
 - **a.** In Tokyo, Japan, a huge pendulum in the Shinjuku building measures 73 feet 9.75 inches. How long does it take for the pendulum to make a complete swing?
 - **b.** A clockmaker wants to build a pendulum that takes 20 seconds to swing back and forth. How long should the pendulum be?

Examples 1-2 Solve each equation.

1.
$$\sqrt{x-4} + 6 = 10$$
 20

3.
$$8 - \sqrt{x+12} = 3$$
 13 4. $\sqrt{x-8} + 5 = 7$ 12

2. $\sqrt{x+13}-8=-2$ **23**

Examples 1-2 Solve each equation.

1.
$$\sqrt{x-4}+6=10$$
 20

3.
$$8 - \sqrt{x + 12} = 3$$
 13

2.
$$\sqrt{x+13}-8=-2$$
 23

4.
$$\sqrt{x-8} + 5 = 7$$
 12

$$\frac{2}{13} = \frac{2}{13} = \frac{2}{13}$$

Examples 1-2 Solve each equation.

1.
$$\sqrt{x-4} + 6 = 10$$
 20

3.
$$8 - \sqrt{x + 12} = 3$$
 13

2.
$$\sqrt{x+13}-8=-2$$
 23

4.
$$\sqrt{x-8} + 5 = 7$$
 12

3)
$$8 - \sqrt{x+12} = \frac{3}{8}$$
 -8
 -8
 $-\sqrt{x+12} = -5$
 $-\sqrt{x+12} = -5$
 $\sqrt{x+12} = -5$
 $\sqrt{x+12} = -5$
 $\sqrt{x+12} = -5$
 $\sqrt{x+12} = -5$

$$\sqrt[3]{x-2} = 3 \ \ 29$$

7.
$$(4y)^{\frac{1}{3}} + 3 = 5$$
 2

6.
$$(x-5)^{\frac{1}{3}}-4=-2$$
 13

8.
$$\sqrt[3]{n+8}-6=-3$$
 19

$$(3) \times (-2) = (3)$$

$$\times (-2) = (3)$$

$$\sqrt[3]{x-2} = 3$$
 29

7.
$$(4y)^{\frac{1}{3}} + 3 = 5$$
 2

6.
$$(x-5)^{\frac{1}{3}}-4=-2$$
 13

8.
$$\sqrt[3]{n+8} - 6 = -3$$
 19

$$(4y)^{\frac{1}{3}} + 3 = 5$$

$$(4y)^{\frac{1}{3}} + 3 = 5$$

$$(4y)^{\frac{1}{3}} = (2)^{\frac{3}{3}}$$

$$(4y)^{\frac{1}{3}} = (2)$$

$$(4y)^{\frac{1}{3}} = (2)$$

$$(4y)^{\frac{1}{3}} = (2)$$

Standardized Test Example 3 Solve a Radical Equation

What is the solution of $3(\sqrt[4]{2n+6}) - 6 = 0$?

A -1

B 1

C 5

D 11

Example 3 14. MULTIPLE CHOICE Solve $(2y + 6)^{\frac{1}{4}} - 2 = 0$.

$$\mathbf{A} y = 1$$

B
$$y = 5$$

A
$$y = 1$$
 B $y = 5$ **C** $y = 11$ **D** $y = 15$

D
$$y = 15$$

KeyConcept Solving Radical Inequalities

- Step 1 If the index of the root is even, identify the values of the variable for which the radicand is nonnegative.
- Step 2 Solve the inequality algebraically.
- Step 3 Test values to check your solution.

Example 4 Solve a Radical Inequality

Solve $3 + \sqrt{5x - 10} \le 8$.

Step 1 Since the radicand of a square root must be greater than or equal to zero, first solve $5x - 10 \ge 0$ to identify the values of x for which the left side of the inequality is defined.

$$5x - 10 \ge 0$$
 Set the radicand ≥ 0 .

$$5x \ge 10$$
 Add 10 to each side.

$$x \ge 2$$
 Divide each side by 5.

Step 2 Solve $3 + \sqrt{5x - 10} \le 8$.

$$3 + \sqrt{5x - 10} \le 8$$
 Original inequality

$$\sqrt{5x-10} \le 5$$
 Isolate the radical.

$$5x - 10 \le 25$$
 Eliminate the radical.

$$5x \le 35$$
 Add 10 to each side.

$$x \le 7$$
 Divide each side by 5.

11.
$$5 + \sqrt{4y - 5} = 12 \frac{27}{2}$$

12.
$$\sqrt{2t-7} = \sqrt{t+2}$$
 9

13. CSS REASONING The time T in seconds that it takes a pendulum to make a complete swing back and forth is given by the formula $T = 2\pi\sqrt{\frac{L}{g}}$, where L is the length of the pendulum in feet and g is the acceleration due to gravity, 32 feet per second squared.

13a. about 9.5 seconds

- **a.** In Tokyo, Japan, a huge pendulum in the Shinjuku building measures 73 feet 9.75 inches. How long does it take for the pendulum to make a complete swing?
- b. A clockmaker wants to build a pendulum that takes 20 seconds to swing back and forth. How long should the pendulum be? about 324 ft

Example 3

14. MULTIPLE CHOICE Solve $(2y + 6)^{\frac{1}{4}} - 2 = 0$. **B**

$$\mathbf{A} y = 1$$

B
$$y = 5$$

C
$$y = 11$$

D
$$y = 15$$

Example 4

Solve each inequality.

15.
$$\sqrt{3x+4}-5 \le 4$$

17. $2+\sqrt{4y-4} \le 6$

19.
$$1 + \sqrt{7x - 3} > 3$$

21.
$$-2 + \sqrt{9 - 5x} \ge 6$$

16.
$$\sqrt{b-7} + 6 \le 12$$

18.
$$\sqrt{3a+3}-1 \le 2$$

20.
$$\sqrt{3x+6}+2 \le 5$$

22.
$$6 - \sqrt{2y + 1} < 3$$

Example 1 Solve each equation. Confirm by using a graphing calculator.

23.
$$\sqrt{2x+5}-4=3$$
 22

25.
$$\sqrt{x+6} = 5 - \sqrt{x+1}$$
 3

27.
$$\sqrt{x-15}=3-\sqrt{x}$$
 no real solution

29.
$$6 + \sqrt{4x + 8} = 9 \frac{1}{4}$$

31.
$$\sqrt{x-4} = \sqrt{2x-13}$$
 9

33.
$$\sqrt{x-5} - \sqrt{x} = -2 \frac{81}{16}$$

24.
$$6 + \sqrt{3x + 1} = 11$$
 8

26.
$$\sqrt{x-3} = \sqrt{x+4} - 1$$
 12

28.
$$\sqrt{x-10}=1-\sqrt{x}$$
 no real solution

30.
$$2 + \sqrt{3y - 5} = 10$$
 23

32.
$$\sqrt{7a-2} = \sqrt{a+3}$$

32.
$$\sqrt{7a-2} = \sqrt{a+3}$$
 $\frac{5}{6}$ 34. $\sqrt{b-6} + \sqrt{b} = 3$ $\frac{25}{4}$

35. CSS SENSE-MAKING Isabel accidentally dropped her keys from the top of a Ferris wheel. The formula $t = \frac{1}{4}\sqrt{d-h}$ describes the time t in seconds at which the keys are hmeters above the ground and Isabel is d meters above the ground. If Isabel was 65 meters high when she dropped the keys, how many meters above the ground will the keys be after 2 seconds? 1 m

Example 2 Solve each equation.

36.
$$(5n-6)^{\frac{1}{3}}+3=4$$
 $\frac{7}{5}$

38.
$$(6q+1)^{\frac{1}{4}}+2=5$$
 $\frac{40}{3}$

40.
$$(3y-2)^{\frac{1}{5}}+5=6$$
 1

42.
$$2(x-10)^{\frac{1}{3}}+4=0$$
 2

44.
$$\sqrt[3]{5x+10}-5=0$$
 23

46.
$$\frac{1}{7}(14a)^{\frac{1}{3}} = 1$$
 24.5

37.
$$(5p-7)^{\frac{1}{3}}+3=5$$
 3

39.
$$(3x+7)^{\frac{1}{4}}-3=1$$
 83

41.
$$(4z-1)^{\frac{1}{5}}-1=2$$
 61

43.
$$3(x+5)^{\frac{1}{3}}-6=0$$
 3

45.
$$\sqrt[3]{4n-8}-4=0$$
 18

47.
$$\frac{1}{4}(32b)^{\frac{1}{3}} = 1$$
 2

48. MULTIPLE CHOICE Solve $\sqrt[4]{y+2} + 9 = 14$. D **Example 3**

$$25(\sqrt{x+6})(5-\sqrt{x+1})(5-\sqrt{x+1})$$

$$x+6 = (5-7x+1)(5-7x+1)$$

$$x+6 = 25-5\sqrt{x+1}-5\sqrt{x+1}+(7x+1)$$

$$x+6 = 25-19\sqrt{x+1}+x+1$$

$$x+6 = 26+x-19\sqrt{x+1}$$

$$x+6 = 26+x-19\sqrt$$

Example 4

$$56. -3 \le x < 24$$

Solve each inequality. **53.** no real solution **54.** x > 4 **55.** $d > -\frac{3}{4}$ **57.** $-\frac{5}{2} \le y \le 2$ **50.** $1 + \sqrt{5x - 2} > 4$ $x > \frac{11}{5}$ **51.** $\sqrt{2x + 14} - 6 \ge 4$ $x \ge 43$ **52.** $10 - \sqrt{2x + 7} \le 3$ $x \ge 21$

$$57. -\frac{3}{2} \le y \le$$

54.
$$\sqrt{2x+5} - \sqrt{9+x} > 0$$

53.
$$6 + \sqrt{3y+4} < 6$$
 54. $\sqrt{2x+5} - \sqrt{9+x} > 0$ **55.** $\sqrt{d+3} + \sqrt{d+7} > 4$

56.
$$\sqrt{3x+9}-2<7$$

57.
$$\sqrt{2y+5}+3 \le 6$$

58.
$$-2 + \sqrt{8 - 4z} \ge 8$$
 $z \le -23$

56.
$$\sqrt{3x+9}-2 < 7$$
 57. $\sqrt{2y+5}+3 \le 6$ **58.** $-2+\sqrt{8}-4z \ge 8$ $z \le -23$ **59.** $-3+\sqrt{6a+1} > 4$ **a** > 8 **60.** $\sqrt{2}-\sqrt{b+6} \le -\sqrt{b}$ **61.** $\sqrt{c+9}-\sqrt{c} > \sqrt{3}$ $0 \le b \le 2$ $0 \le c < 3$

61.
$$\sqrt{c+9} - \sqrt{c} > c$$

