Slope Fields

Nancy Stephenson
Clements High School
Sugar Land, Texas

Draw a slope field for each of the following differential equations. Each tick mark is one unit.

1. $\frac{d y}{d x}=x+1$

2. $\frac{d y}{d x}=x+y$

3. $\frac{d y}{d x}=y-1$

4. $\frac{d y}{d x}=2 y$

5. $\frac{d y}{d x}=2 x$

6. $\frac{d y}{d x}=-\frac{y}{x}$

Match the slope fields with their differential equations.
(A)

(B)

(C)

(D)

7. $\frac{d y}{d x}=\sin x$
8. $\frac{d y}{d x}=x-y$
9. $\frac{d y}{d x}=2-y$
10. $\frac{d y}{d x}=x$

Match the slope fields with their differential equations.
(A)

(B)

(C)

(D)

11. $\frac{d y}{d x}=0.5 x-1$
12. $\frac{d y}{d x}=0.5 y$
13. $\frac{d y}{d x}=-\frac{x}{y}$
14. $\frac{d y}{d x}=x+y$

From the May 2008 AP Calculus Course Description:
15.

The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=x^{2}$
(B) $y=e^{x}$
(C) $y=e^{-x}$
(D) $y=\cos x$
(E) $y=\ln x$
16.

The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=\sin x$
(B) $y=\cos x$
(C) $y=x^{2}$
(D) $y=\frac{1}{6} x^{3}$
(E) $y=\ln x$
17. Consider the differential equation given by $\frac{d y}{d x}=\frac{x y}{2}$.
(A) On the axes provided, sketch a slope field for the given differential equation.

(B) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve $y=f(x)$ through the point $(1,1)$. Then use your tangent line equation to estimate the value of $f(1.2)$.
(C) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=1$. Use your solution to find $f(1.2)$.
(D) Compare your estimate of $f(1.2)$ found in part (b) to the actual value of $f(1.2)$ found in part
(E) Was your estimate from part (b) an underestimate or an overestimate? Use your slope field to explain why.
18. Consider the differential equation given by $\frac{d y}{d x}=\frac{x}{y}$.
(A) On the axes provided, sketch a slope field for the given differential equation.

(B) Sketch a solution curve that passes through the point $(0,1)$ on your slope field.
(C) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(0)=1$.
(D) Sketch a solution curve that passes through the point $(0,-1)$ on your slope field.
(E) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(0)=-1$.

