What you'll learn about

- Product Rule in Integral Form
- · Solving for the Unknown Integral
- Tabular Integration
- Inverse Trigonometric and Logarithmic Functions

6.3 Integration by Parts

Product Rule in Integral Form

When u and v are differentiable functions of x, the Product Rule for differentiation tells us that

$$\int \frac{d}{dx}(uv) \int u \frac{dv}{dx} + v \frac{du}{dx}.$$

Integrating both sides with respect to x and rearranging leads to the integral equation

$$\int \left(u\frac{dv}{dx}\right)dx = \int \left(\frac{d}{dx}(uv)\right)dx - \int \left(v\frac{du}{dx}\right)dx$$
$$= uv - \int \left(v\frac{du}{dx}\right)dx.$$

When this equation is written in the simpler differential notation we obtain the following formula.

Integration by Parts Formula

$$\int u \, dv = uv - \int v \, du$$

EXAMPLE 1 Using Integration by Parts

Evaluate $\int x \cos x \, dx$.

SOLUTION

We use the formula $\int u \, dv = uv - \int v \, du$ with

$$u = x$$
, $dv = \cos x \, dx$.

To complete the formula, we take the differential of u and find the simplest antiderivative of $\cos x$.

$$du = dx$$
 $v = \sin x$

Then,

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

Now try Exercise 1.

Q: is there an incorrect way to set this up?

A: Oh. Yes.

EXPLORATION 1 Choosing the Right u and dv

Not every choice of u and dv leads to success in antidifferentiation by parts. There is always a trade-off when we replace $\int u \, dv$ with $\int v \, du$, and we gain nothing if $\int v \, du$ is no easier to find than the integral we started with. Let us look at the other choices we might have made in Example 1 to find $\int x \cos x \, dx$.

- 1. Apply the parts formula to $\int x \cos x \, dx$, letting u = 1 and $dv = x \cos x \, dx$. Analyze the result to explain why the choice of u = 1 is never a good one.
- 2. Apply the parts formula to $\int x \cos x \, dx$, letting $u = x \cos x$ and dv = dx. Analyze the result to explain why this is not a good choice for this integral.
- 3. Apply the parts formula to $\int x \cos x \, dx$, letting $u = \cos x$ and $dv = x \, dx$. Analyze the result to explain why this is not a good choice for this integral.
- **4.** What makes x a good choice for u and $\cos x \, dx$ a good choice for dv?

 $\int u=1 \, dv = x\cos x \, dx \, (2) \, u = x \cos x \, dv = dx$ $\int u=0 \, v = \frac{1}{2} \, (\cos x) \, dx \, v = x$ $\int (-\sin x)(x) \, dx$ $= x^2 - \left(x + (\cos x) + (\cos$

In Exercises 1–10, find the indefinite integral.

$$1. \int x \sin x \, dx \\
-x \cos x + \sin x + C$$

3.
$$\int 3t \ e^{2t} \ dt \quad \frac{3}{2} t e^{2t} - \frac{3}{4} e^{2t} + C \quad 4$$

$$U = x \quad dv = s \text{ in } x dx$$

$$du = dx \quad v = -cos x$$

$$du = -cos x - (-cos x) dx$$

$$= -x cos x + S \text{ in } x dx$$

$$= -x cos x + C$$

3.
$$\int 3t \ e^{2t} \ dt \quad \frac{3}{2} t e^{2t} - \frac{3}{4} e^{2t} + C$$

$$u = 3t$$
 $dv = e^{1t}dt$
 $du = 3t$ $v = \frac{1}{2}e^{2t}$
 $(3t)(\frac{1}{2}e^{2t}) - (3t)(3)dt$
 $(3t)(\frac{1}{2}e^{2t}) - (3t)(3)dt$
 $(3t)(\frac{1}{2}e^{2t}) - (3t)(3)dt$

EXAMPLE 2 Repeated Use of Integration by Parts

Evaluate $\int x^2 e^x dx$.

SOLUTION

With $u = x^2$, $dv = e^x dx$, du = 2x dx, and $v = e^x$, we have

$$\int x^2 e^x \, dx = x^2 e^x - 2 \int x e^x \, dx.$$

The new integral is less complicated than the original because the exponent on x is reduced by one. To evaluate the integral on the right, we integrate by parts again with u = x, $dv = e^x dx$. Then du = dx, $v = e^x$, and

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C.$$

Hence,

$$\int x^2 e^x \, dx = x^2 e^x - 2 \int x e^x \, dx$$
$$= x^2 e^x - 2x e^x + 2e^x + C.$$

5.
$$\int x^{2} \cos x \, dx$$

$$x^{2} \sin x + 2x \cos x - 2 \sin x + C$$
7.
$$\int 3x^{2} e^{2x} \, dx$$

$$y = 2x dx \qquad dx = 2x dx \qquad 0 = 2x$$

7.
$$\int 3x^{2} e^{2x} dx$$

$$0 e^{2x} = 2 \cdot e^{2x}$$

$$1 e^$$

6.
$$\int x^{2}e^{-x} dx$$

$$-x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + C$$

$$V = X^{2} \quad dv = e^{-x}$$

$$U = X^$$

9.
$$\int y \ln y \, dy = \frac{y^2}{2} \ln y - \frac{y^2}{4} + C$$

9.
$$\int y \ln y \, dy = \frac{y^2}{2} \ln y - \frac{y^2}{4} + C$$

$$u = \ln y \quad dv = \frac{y}{2}$$

$$du = \frac{1}{2} dy \quad = \frac{y}{2}$$

$$u = \ln y \quad dv =$$

EXAMPLE 3 Solving an Initial Value Problem

Solve the differential equation $dy/dx = x \ln(x)$ subject to the initial condition y = -1 when x = 1. Confirm the solution graphically by showing that it conforms to the slope field.

SOLUTION

We find the antiderivative of $x \ln(x)$ by using parts. It is usually a better idea to differentiate $\ln(x)$ than to antidifferentiate it (do you see why?), so we let $u = \ln(x)$ and dv = x dx.

$$y = \int x \ln(x) dx$$

$$= \left(\frac{x^2}{2}\right) \ln(x) - \int \left(\frac{x^2}{2}\right) \left(\frac{1}{x}\right) dx$$

$$= \left(\frac{x^2}{2}\right) \ln(x) - \int \left(\frac{x}{2}\right) dx$$

$$= \left(\frac{x^2}{2}\right) \ln(x) - \frac{x^2}{4} + C$$

$$-1 = \left(\frac{1}{2}\right) \ln(1) - \frac{1}{4} + C$$

Using the initial condition,

$$-1 = \left(\frac{1}{2}\right)\ln(1) - \frac{1}{4} + C$$
$$-\frac{3}{4} = 0 + C$$
$$C = -\frac{3}{4}.$$

Thus

$$y = \left(\frac{x^2}{2}\right) \ln(x) - \frac{x^2}{4} - \frac{3}{4}.$$

Figure 6.9 shows a graph of this function superimposed on a slope field for $dy/dx = x \ln(x)$, to which it conforms nicely. **Now try Exercise 11.**

In Exercises 11–16, solve the initial value problem. Confirm your answer by checking that it conforms to the slope field of the differential equation.

11.
$$\frac{dy}{dx} = (x+2)\sin x$$
 and $y = 2$ when $x = 0$

$$\frac{du}{dx} = x \sec^2 x \text{ and } u = 1 \text{ when } x = 0$$

13.
$$\frac{du}{dx} = x \sec^2 x$$
 and $u = 1$ when $x = 0$

equation.
11.
$$\frac{dy}{dx} = (x + 2) \sin x$$
 and $y = 2$ when $x = 0$
 $y = (x + 2) \sin x$ and $y = 2$ when $x = 0$
13. $\frac{du}{dx} = x \sec^2 x$ and $u = 1$ when $x = 0$
 $y = (x + 2) \cos x$
 $y = (x + 2) \cos x$

$$2 = -(2)(1) + 0 + 0$$

$$2 = -(2)(1) + 0 + 0$$

EXAMPLE 4 Solving for the Unknown Integral

Evaluate $\int e^x \cos x \, dx$.

SOLUTION

Let $u = e^x$, $dv = \cos x \, dx$. Then $du = e^x \, dx$, $v = \sin x$, and

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx.$$

Sexcosx dx

The second integral is like the first, except it has $\sin x$ in place of $\cos x$. To evaluate it, we use integration by parts with

$$u = e^x$$
, $dv = \sin x \, dx$, $v = -\cos x$, $du = e^x \, dx$.

Then

$$\int e^x \cos x \, dx = e^x \sin x - \left(-e^x \cos x - \int (-\cos x)(e^x \, dx) \right)$$
$$= e^x \sin x + e^x \cos x + \int e^x \cos x \, dx.$$

 $e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x - e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\sin x + e^{\times}\cos x dx$ $+ \int e^{\times}\cos x dx = e^{\times}\cos x dx = e^{\times}\cos x dx$

19.
$$\frac{e^x}{5}$$
 (2 sin 2x + cos 2x) + C

In Exercises 17–20, use parts and solve for the unknown integral.

17.
$$\int e^{x} \sin x \, dx$$

$$\frac{e^{x}}{2} (\sin x - \cos x) + C$$
19.
$$\int e^{x} \cos 2x \, dx = 0$$

$$dx = e^{x} dx = 0$$

$$e^{x} (-\cos 2x) \frac{1}{2} e^{x} dx$$

$$e^{x} (-\cos 2x) \frac{1}{2} e^{x} dx$$

$$e^{x} (-\cos 2x) \frac{1}{2} e^{x} dx$$

In Exercises 17–20, use parts and solve for the unknown integral.

17.
$$\int e^{x} \sin x \, dx$$
 18. $\int e^{-x} \cos x \, dx$ 19. $\int e^{x} \cos 2x \, dx$ 20. $\int e^{-x} \sin 2x \, dx$

=(ex)(-cosx)-Sc-cosx(ex)dx =-ex(osx+Scosxexdx

 $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinx}$ $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinxdx}$ $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinxdx}$ $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinxdx}$ $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinx} + C$ $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinx} + C$ $Se^{\times sinxdx} = -e^{\times cosx} + e^{\times sinx} + C$

EXAMPLE 5 Using Tabular Integration

Evaluate $\int x^2 e^x dx$.

SOLUTION

With $(x) = x^2$ and $(x) = e^x$, we list:

We combine the products of the functions connected by the arrows according to the operation signs above the arrows to obtain

$$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C.$$

Compare this with the result in Example 2.

Now try Exercise 21.

EXAMPLE 6 Using Tabular Integration

Evaluate $\int x^3 \sin x \, dx$.

SOLUTION

With $f(x) = x^3$ and $g(x) = \sin x$, we list:

f(x) and its derivatives	g(x) and its integrals
x^3 (+	$\sin x$
$3x^2$ (-	$-\cos x$
6x (+	$-\sin x$
6 — (-	$\rightarrow \cos x$
0	\rightarrow sin x

Again we combine the products of the functions connected by the arrows according to the operation signs above the arrows to obtain

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C.$$
Now try Exercise 23.

In Exercises 21–24, use tabular integration to find the antiderivative.

21.
$$\int x^{4}e^{-x} dx$$

$$(-x^{4} - 4x^{3} - 12x^{2} - 24x - 24)e^{-x} + C$$

$$(x^{4})(-e^{-x}) - (-1x^{3})(e^{-x})$$

$$(x^{4})(-e^{-x})(-e^{-x})$$

$$(x^{4})(-e^{x$$