5-Minute Check

Over Lesson 7–6

11 The number of people who carry cell phones increases by 29% each year. In 2002, there were 180 million cell phone users. Which equation models the number of people with cell phones y if it is t years after 2002?

A.
$$y = 180(1 + 0.29)^t$$

B.
$$y = 180(1 + 2.9)^t$$

C.
$$y = 180(0.29)$$

D.
$$y = 180(1 + 0.29)t$$

5-Minute Check Over Lesson 7–6

- 11 The number of people who carry cell phones increases by 29% each year. In 2002, there were 180 million cell phone users. Which equation models the number of people with cell phones y if it is t years after 2002?
- \longrightarrow A. $y = 180(1 + 0.29)^t$

B.
$$y = 180(1 + 2.9)^t$$

C.
$$y = 180(0.29)$$

D.
$$y = 180(1 + 0.29)t$$

5-Minute Check Over Lesson 7–6

In 2004, there were 243 million vehicles in the U.S. This number is increasing by 1.6% each year. If y represents cars and t represents the number of years after 2004, which equation models the number of cars in the U.S.?

A.
$$y = 243(0.016)^t$$

B.
$$y = 243(1 + 0.016)^t$$

C.
$$y = 243(0.16)t$$

D.
$$y = 243(1 + 0.016)t$$

- **5-Minute Check** Over Lesson 7–6
- In 2004, there were 243 million vehicles in the U.S. This number is increasing by 1.6% each year. If y represents cars and t represents the number of years after 2004, which equation models the number of cars in the U.S.?

A.
$$y = 243(0.016)^t$$

$$\longrightarrow$$
 B. $y = 243(1 + 0.016)^t$

C.
$$y = 243(0.16)t$$

D.
$$y = 243(1 + 0.016)t$$

Then

You related arithmetic sequences to linear functions.

Now

- Identify and generate geometric sequences.
- Relate geometric sequences to exponential functions.

EXAMPLE 1 Identify Geometric Sequences

A. Determine whether the sequence is arithmetic, geometric, or neither. Explain.

0, 8, 16, 24, 32, ...

Answer: The common difference is 8. So, the sequence is arithmetic.

EXAMPLE 1

Identify Geometric Sequences

B. Determine whether the sequence is arithmetic, geometric, or neither. Explain.

$$\frac{48}{64} = \frac{3}{4}$$

$$\frac{36}{48} = \frac{3}{4}$$

$$\frac{48}{64} = \frac{3}{4}$$
 $\frac{36}{48} = \frac{3}{4}$ $\frac{27}{36} = \frac{3}{4}$

Answer: The common ratio is $\frac{3}{4}$, so the sequence is geometric.

EXAMPLE 1 Check Your Progress

B. Determine whether the sequence is arithmetic, geometric, or neither.

1, 2, 4, 14, 54, ...

A. arithmetic

B. geometric

C. neither

EXAMPLE 1 Check Your Progress

B. Determine whether the sequence is arithmetic, geometric, or neither.

1, 2, 4, 14, 54, ...

A. arithmetic

B. geometric

neither

EXAMPLE 2 Find Terms of Geometric Sequences

A. Find the next three terms in the geometric sequence.

Step 1 Find the common ratio.

The common ratio is -8.

EXAMPLE 2 Find Terms of Geometric Sequences

Step 2 Multiply each term by the common ratio to find the next three terms.

Answer: The next 3 terms in the sequence are 4096; –32,768; and 262,144.

EXAMPLE 2 **Find Terms of Geometric Sequences**

B. Find the next three terms in the geometric sequence.

40, 20, 10, 5,

Step 1 Find the common ratio.

$$40 20 10 5$$

$$\frac{40}{20} = \frac{1}{2} \quad \frac{10}{20} = \frac{1}{2} \quad \frac{5}{10} = \frac{1}{2}$$

The common ratio is $\frac{1}{2}$.

EXAMPLE 2 Find Terms of Geometric Sequences

Step 2 Multiply each term by the common ratio to find the next three terms.

Answer: The next 3 terms in the sequence are $\frac{5}{2}$, $\frac{5}{4}$, and $\frac{5}{8}$.

ncept nth term of a Geometric Sequence

term a_n of a geometric sequence with first term a_1 and common ratio r is given by the formula, where n is any positive integer and a_1 , $r \neq 0$.

$$a_{n} = a_{1}r^{n-1}$$

EXAMPLE 3 Find the *n*th Term of a Geometric Sequence

A. Write an equation for the *n*th term of the geometric sequence $1, -2, 4, -8, \dots$

The first term of the sequence is 1. So, $a_1 = 1$. Now find the common ratio.

The common ratio is –2.

$$a_n = a_1 r^{n-1}$$

$$a_n = 1(-2)^{n-1}$$

Formula for the *n*th term

$$a_1 = 1$$
 and $r = -2$

Answer: $a_n = 1(-2)^{n-1}$

EXAMPLE 3 Find the *n*th Term of a Geometric Sequence

B. Find the 12th term of the sequence.

$$a_n = a_1 r^{n-1}$$
 Formula for the *n*th term

$$a_{12} = 1(-2)^{12-1}$$
 For the *n*th term, $n = 12$.

$$= 1(-2)^{11}$$
 Simplify.

$$= 1(-2048)$$
 $(-2)^{11} = -2048$

$$= -2048$$
 Multiply.

Answer: The 12th term of the sequence is –2048.

EXAMPLE 3 Check Your Progress

A. Write an equation for the *n*th term of the geometric sequence 3, -12, 48, -192,

A.
$$a_n = 3(-4)^{n-1}$$

B.
$$a_n = 3\left(\frac{1}{4}\right)^{n-1}$$

C.
$$a_n = 3\left(\frac{1}{3}\right)^{n-1}$$

D.
$$a_n = 4(-3)^{n-1}$$

EXAMPLE 3 Check Your Progress

A. Write an equation for the *n*th term of the geometric sequence 3, -12, 48, -192,

(A.)
$$a_n = 3(-4)^{n-1}$$

B.
$$a_n = 3\left(\frac{1}{4}\right)^{n-1}$$

C.
$$a_n = 3\left(\frac{1}{3}\right)^{n-1}$$

D.
$$a_n = 4(-3)^{n-1}$$

B. Find the 7th term of this sequence using the equation $a_n = 3(-4)^{n-1}$.

A. 768

B. -3072

12,288

D. -49,152

Determine whether each sequence is arithmetic, geometric, or neither. Explain. **Example 1**

1. 200, 40, 8, ...

2. 2, 4, 16, ...

3. -6, -3, 0, 3, ... **4.** 1, -1, 1, -1, ...

Find the next three terms in each geometric sequence. 5–8. See margin.

1. Geometric; the Example 2

5. 10, 20, 40, 80, ... **6.** 100, 50, 25, ... **7.** 4, $-1, \frac{1}{4}$, ... **8.** -7, 21, -63, ...

common ratio is $\frac{1}{5}$.

Example 3 Write an equation for the nth term of each geometric sequence, and find the indicated term.

9. the fifth term of -6, -24, -96, ... $a_n = -6 \cdot (4)^{n-1}$; -1536

10. the seventh term of -1, 5, -25, ... $a_n = -1 \cdot (-5)^{n-1}$; -15.625

11. the tenth term of 72, 48, 32, ... $a_n = 72 \cdot \left(\frac{2}{3}\right)^{n-1}$; $\frac{4096}{2187}$

12. the ninth term of 112, 84, 63, ... $a_n = 112 \cdot \left(\frac{3}{4}\right)^{n-1}$; $\frac{45,927}{4096}$

2. Neither: there is no common ratio or difference.

3. Arithmetic: the common difference is 3.

4. Geometric: the common ratio is -1.

13. EXPERIMENT In a physics class experiment, Diana drops a ball from a height of **Example 4** 16 feet. Each bounce has 70% the height of the previous bounce. Draw a graph to represent the height of the ball after each bounce. See margin.

Example 1	Determine whether each sequence is arithmetic, geom	etric, or neither, Explain.
EAGIIIPIO I	Determine whichief each sequence is withintere, geom	certe, or meteries. Explain.

- **1.** 200, 40, 8, ... **2.** 2, 4, 16, ... **3.** -6, -3, 0, 3, ... **4.** 1, -1, 1, -1, ...

Find the next three terms in each geometric sequence. 5–8. See margin. 1. Geometric; the Example 2

- common ratio is $\frac{1}{2}$. **5.** 10, 20, 40, 80, ... **6.** 100, 50, 25, ... **7.** 4, $-1, \frac{1}{4}$, ... **8.** -7, 21, -63, ...

Write an equation for the nth term of each geometric sequence, and find the **Example 3** indicated term.

- **9.** the fifth term of -6, -24, -96, ...
- **10.** the seventh term of -1, 5, -25, ...
- **11.** the tenth term of 72, 48, 32, ... a_n
- **12.** the ninth term of 112, 84, 63, ...

$$y = (-6)(4)^{3}$$

 $y = (-6)(4)^{3}$
 $y = (-6)(4)^{3}$
 $= (-6)(256) = -153$

Example 4

13. EXPERIMENT In a physics class experiment, and and 16 feet. Each bounce has 70% the height of the previous bounce. Draw a graph to represent the height of the ball after each bounce. **See margin**.

7.
$$-\frac{1}{16}, \frac{1}{64}, -\frac{1}{256}$$

10. the seventh term of -1, 5, -25, ... $a_n = -1 \cdot (-5)^{n-1}$; -15,625

- 11. the tenth term of 72, 48, 32, ... $a_n = 72 \cdot \left(\frac{2}{3}\right)^{n-1}$; $\frac{4096}{2187}$
- **12.** the ninth term of 112, 84, 63, ... $a_n = 112 \cdot \left(\frac{3}{4}\right)^{n-1}; \frac{45,927}{4096}$

difference.

- 3. Arithmetic; the common difference is 3.
- 4. Geometric; the common ratio is -1.

13. EXPERIMENT In a physics class experiment, Diana drops a ball from a height of 16 feet. Each bounce has 70% the height of the previous bounce. Draw a graph to represent the height of the ball after each bounce. **See margin**.

S EMPRY

 $a_n = a_1 \cdot (r)^{n-1}$

(10) N=7

Practice and Problem Solving

Extra Practice is on R7.

Example 1 Determine whether each sequence is arithmetic, geometric, or neither. Explain.

18.
$$-10$$
, -8 , -6 , -4 , ... **19.** 5 , -10 , 20 , 40 , ...

Example 2 Find the next three terms in each geometric sequence. 20–25. See margin.

26. The first term of a geometric series is 1 and the common ratio is 9. What is the 8th **Example 3** term of the sequence? 4,782,969

- 27. The first term of a geometric series is 2 and the common ratio is 4. What is the 14th term of the sequence? 134,217,728
- **28.** What is the 15th term of the geometric sequence -9, 27, -81, ...? -43, 046, 721
- **29.** What is the 10th term of the geometric sequence 6, -24, 96, ...? -1.572.864
- 14. Neither: there is no common ratio or difference.
- 15. Arithmetic; the common difference is 10.
- 16. Geometric; the common ratio is 5.
- **17.** Geometric; the common ratio is $\frac{1}{2}$.
- **18.** Arithmetic; the common difference is 2.
- 19. Neither; there is no common ratio or difference.

21.
$$\frac{4}{3}, \frac{4}{9}, \frac{4}{27}$$

23.
$$\frac{25}{4}$$
, $\frac{25}{16}$, $\frac{25}{64}$

25.
$$-2, \frac{1}{4}, -\frac{1}{32}$$