What you'll learn about

- · Linear Motion Revisited
- General Strategy
- Consumption Over Time
- Net Change from Data
- Work

7.1 Integral As Net Change

We actually did this before, back at 5.2...

...remember these?

Answers:

29.
$$\int_{8}^{11} 87 \ dt = 261 \text{ miles}$$

30.
$$\int_0^{60} 25 \, dt = 1500 \, \text{gallons}$$

31.
$$\int_{6}^{7.5} 300 \, dt = 450 \text{ calories}$$

In Exercises 29–32, express the desired quantity as a definite integral and evaluate the integral using Theorem 2.

- 29. Find the distance traveled by a train moving at 87 mph from 8:00 A.M. to 11:00 A.M.
- 30. Find the output from a pump producing 25 gallons per minute during the first hour of its operation.
- 31. Find the calories burned by a walker burning 300 calories per hour between 6:00 p.m. and 7:30 p.m.

These were easy, mostly because the integrand was a constant. What if it changed over the course of time?

EXAMPLE 1 Interpreting a Velocity Function

Figure 7.1 shows the velocity

$$\frac{ds}{dt} = v(t) = t^2 - \frac{8}{(t+1)^2}$$
 $\frac{\text{cm}}{\text{sec}}$

of a particle moving along a horizontal s-axis for $0 \le t \le 5$. Describe the motion.

SOLUTION

Solve Graphically The graph of v (Figure 7.1) starts with v(0) = -8, which we interpret as saying that the particle has an initial velocity of 8 cm/sec to the left. It slows to a halt at about t = 1.25 sec, after which it moves to the right (v > 0) with increasing speed, reaching a velocity of $v(5) \approx 24.8$ cm/sec at the end. Now try Exercise 1(a).

SO. It'll be good for us to be savvy with our graphing calculator....

[0, 5] by [-10, 30]

Figure 7.1 The velocity function in Example 1.

EXAMPLE 2 Finding Position from Displacement

Suppose the initial position of the particle in Example 1 is s(0) = 9. What is the particle's position at (a) t = 1 sec? (b) t = 5 sec?

Displacement =
$$\int_0^1 v(t) dt$$

= $\int_0^1 \left(t^2 - \frac{8}{(t+1)^2} \right) dt$
= $\left[\frac{t^3}{3} + \frac{8}{t+1} \right]_0^1$
= $\frac{1}{3} + \frac{8}{2} - 8 = -\frac{11}{3}$.

During the first second of motion, the particle moves 11/3 cm to the left. It starts at s(0) = 9, so its position at t = 1 is

New position = initial position + displacement =
$$9 - \frac{11}{3} = \frac{16}{3}$$
.

EXAMPLE 2 Finding Position from Displacement

Suppose the initial position of the particle in Example 1 is s(0) = 9. What is the particle's position at (a) t = 1 sec? (b) t = 5 sec?

(b) If we model the displacement from t = 0 to t = 5 in the same way, we arrive at

Displacement =
$$\int_0^5 v(t) dt = \left[\frac{t^3}{3} + \frac{8}{t+1} \right]_0^5 = 35.$$

The motion has the net effect of displacing the particle 35 cm to the right of its starting point. The particle's final position is

Final position = initial position + displacement

$$= s(0) + 35 = 9 + 35 = 44.$$

EXAMPLE 3 Calculating Total Distance Traveled

Find the *total distance traveled* by the particle in Example 1.

SOLUTION

Solve Analytically We partition the time interval as in Example 2 but record every position shift as *positive* by taking absolute values. The Riemann sum approximating total distance traveled is

$$\sum |v(t_k)| \, \Delta t,$$

and we are led to the integral

Total distance traveled =
$$\int_0^5 |v(t)| dt = \int_0^5 \left| t^2 - \frac{8}{(t+1)^2} \right| dt.$$

Evaluate Numerically We have

NINT
$$\left(\left| t^2 - \frac{8}{(t+1)^2} \right|, t, 0, 5 \right) \approx 42.59.$$

Now try Exercise 1(c).

Why do we take the absolute value?

Compare the motion of the particle to the graph of v(t)...

1.
$$v(t) = 5 \cos t$$
, $0 \le t \le 2\pi$

In Exercises 1–8, the function v(t) is the velocity in m/sec of a particle moving along the x-axis. Use analytic methods to do each of

In Exercises 1–8, the function v(t) is the velocity in m/sec of a particle moving along the x-axis. Use analytic methods to do each of the following:

- (a) Determine when the particle is moving to the right, to the left, and stopped.
- (b) Find the particle's displacement for the given time interval. If
- s(0) = 3, what is the particle's final position?
- (c) Find the total distance traveled by the particle.
- 1. $v(t) = 5 \cos t$, $0 \le t \le 2\pi$ See page 389.
- 2. $v(t) = 6 \sin 3t$, $0 \le t \le \pi/2$ See page 389.
- 3. v(t) = 49 9.8t, $0 \le t \le 10$ See page 389.
- **4.** $v(t) = 6t^2 18t + 12$, $0 \le t \le 2$ See page 389.
- 5. $v(t) = 5 \sin^2 t \cos t$, $0 \le t \le 2\pi$ See page 389.
- **6.** $v(t) = \sqrt{4-t}$, $0 \le t \le 4$ See page 389.
- 7. $v(t) = e^{\sin t} \cos t$, $0 \le t \le 2\pi$ See page 389.
- 8. $v(t) = \frac{t}{1+t^2}$, $0 \le t \le 3$ See page 389.

In Exercises 1–8, the function v(t) is the velocity in m/sec of a particle moving along the x-axis. Use analytic methods to do each of the following:

- (a) Determine when the particle is moving to the right, to the left, and stopped.
- (b) Find the particle's displacement for the given time interval. If
- s(0) = 3, what is the particle's final position?
- (c) Find the total distance traveled by the particle.

1.
$$v(t) = 5 \cos t$$
, $0 \le t \le 2\pi$ See page 389.

2.
$$v(t) = 6 \sin 3t$$
, $0 \le t \le \pi/2$ See page 389.

3.
$$v(t) = 49 - 9.8t$$
, $0 \le t \le 10$ See page 389.

4.
$$v(t) = 6t^2 - 18t + 12$$
, $0 \le t \le 2$ See page 389.

5.
$$v(t) = 5 \sin^2 t \cos t$$
, $0 \le t \le 2\pi$ See page 389.

6.
$$v(t) = \sqrt{4-t}$$
, $0 \le t \le 4$ See page 389.

7.
$$v(t) = e^{\sin t} \cos t$$
, $0 \le t \le 2\pi$ See page 389.

8.
$$v(t) = \frac{t}{1+t^2}$$
, $0 \le t \le 3$ See page 389.

10. A particle travels with velocity

$$v(t) = (t - 2) \sin t$$
 m/sec

for $0 \le t \le 4$ sec.

(a) What is the particle's displacement? ≈ -1.44952 meters

(b) What is the total distance traveled? ≈1.91411 meters

$$5(t) = \begin{cases} v(t) & absolute value! \\ = \begin{cases} v(t-2)sint dt \\ = 1.99952 \end{cases}$$

) | (E-275:nt | dt

In Exercises 12–16, a particle moves along the x-axis (units in cm). Its initial position at t = 0 sec is x(0) = 15. The figure shows the graph of the particle's velocity v(t). The numbers are the *areas* of the enclosed regions.

- 12. What is the particle's displacement between t = 0 and t = c?
- 13. What is the total distance traveled by the particle in the same time period? 33 cm
- **14.** Give the positions of the particle at times a, b, and c.
- 15. Approximately where does the particle achieve its greatest positive acceleration on the interval [0, b]? t = a
- **16.** Approximately where does the particle achieve its greatest positive acceleration on the interval [0, c]? t = c

In Exercises 17–20, the graph of the velocity of a particle moving on the x-axis is given. The particle starts at x = 2 when t = 0.

- (a) Find where the particle is at the end of the trip.
- (b) Find the total distance traveled by the particle.

21. *U.S. Oil Consumption* The rate of consumption of oil in the United States during the 1980s (in billions of barrels per year) is modeled by the function $C = 27.08 \cdot e^{t/25}$, where t is the number of years after January 1, 1980. Find the total consumption of oil in the United States from January 1, 1980 to January 1, 1990. ≈ 332.965 billion barrels

22. Home Electricity Use The rate at which your home consumes electricity is measured in kilowatts. If your home consumes electricity at the rate of 1 kilowatt for 1 hour, you will be charged

for 1 "kilowatt-hour" of electricity. Suppose that the average consumption rate for a certain home is modeled by the function $C(t) = 3.9 - 2.4 \sin{(\pi t/12)}$, where C(t) is measured in kilowatts and t is the number of hours past midnight. Find the average daily consumption for this home, measured in kilowatt-hours. 93.6 kilowatt-hours

- 23. Population Density Population density measures the number of people per square mile inhabiting a given living area. Washerton's population density, which decreases as you move away from the city center, can be approximated by the function 10,000(2 r) at a distance r miles from the city center.
 - (a) If the population density approaches zero at the edge of the city, what is the city's radius? 2 miles
 - (b) A thin ring around the center of the city has thickness Δr and radius r. If you straighten it out, it suggests a rectangular strip. Approximately what is its area? $2\pi r \Delta r$
 - (c) Writing to Learn Explain why the population of the ring in part (b) is approximately

$$10,000(2-r)(2\pi r) \Delta r$$
.

Population = Population density \times Area

(d) Estimate the total population of Washerton by setting up and evaluating a definite integral. ≈83,776

- 24. *Oil Flow* Oil flows through a cylindrical pipe of radius 3 inches, but friction from the pipe slows the flow toward the outer edge. The speed at which the oil flows at a distance r inches from the center is $8(10 r^2)$ inches per second.
 - (a) In a plane cross section of the pipe, a thin ring with thickness Δr at a distance r inches from the center approximates a rectangular strip when you straighten it out. What is the area of the strip (and hence the approximate area of the ring)? $2\pi r \Delta r$
 - (b) Explain why we know that oil passes through this ring at approximately $8(10 r^2)(2\pi r) \Delta r$ cubic inches per second.
 - (c) Set up and evaluate a definite integral that will give the rate (in cubic inches per second) at which oil is flowing through the pipe. 396π in³/sec or ≈ 1244.07 in³/sec
 - **24.** (b) $8(10 r^2)$ in/sec $(2\pi r)\Delta r$ in² = flow in in³/sec