What you’ll learn about 7.1 Integral As Net Change

* Linear Motion Revisited

* General Strategy We actually did this Answers:
» Consumption Over Time before, back at 5.2... 29. | 87 dt = 261 miles
S -

* Net Change from Data *

30. | 25dr = 1500 gallons
» Work o

...remember these? = T —
. 300 drt JU calories

"
In Exercises 29-32, express the desired quantity as a definite integral
and evaluate the integral using Theorem 2.

29. Find the distance traveled by a train moving at 87 mph from
8:00 AMm. to 11:00 A.Mm.

30. Find the output from a pump producing 25 gallons per minute
during the first hour of its operation.

31. Find the calories burned by a walker burning 300 calories per
hour between 6:00 p.m. and 7:30 p.m.

These were easy, mostly because the integrand was a constant.
What if it changed over the course of time? —



EXAMPLE 1 Interpreting a Velocity Function

Figure 7.1 shows the velocity

of a particle moving along a horizontal s-axis for 0 =7 = 5. Describe the motion.

SOLUTION

Solve Graphically The graph of v (Figure 7.1) starts with v(0) = —8, which we in-
terpret as saying that the particle has an initial velocity of 8 cm /sec to the left. It slows to a
halt at about r = 1.25 sec, after which it moves to the right (v > 0) with increasing speed,

reaching a velocity of v(5) = 24.8 cm /sec at the end. Now try Exercise 1(a).
i
< V‘"l4¥;;q~l\
T a4

SO. It'll be good for us to be savvy
with our graphing calculator....

[0, 5] by [-10, 30]

Figure 7.1 The velocity function in
Example 1.




EXAMPLE 2 Finding Position from Displacement

Suppose the initial position of the particle in Example 1 is s(0) = 9. What is the parti-
cle’s position at (a) r = 1| sec? (b) r = 5 sec?

Displacement =f v(1) dt
0

During the first second of motion, the particle moves 11/3 c¢m to the left. It starts at
5(0) = 9, soits position at = 1 is
11 16

New position = initial position + displacement =9 — 5 3




EXAMPLE 2 Finding Position from Displacement

Suppose the initial position of the particle in Example 1 is s(0) = 9. What is the parti-
cle’s position at (a) 1 = 1 sec? (b) t = 5 sec?

(b) If we model the displacement from 7 = 0 to 7 = 5 in the same way, we arrive at
5 5
i 8

Displacement = (t)dt =|— + = 35.
isplacemer fo1()( 3 + 1),

The motion has the net effect of displacing the particle 35 cm to the right of its starting
point. The particle’s final position is

Final position = initial position + displacement

= 5(0) + 35 =9 + 35 = 44.




EXAMPLE 3 Calculating Total Distance Traveled

Find the fotal distance traveled by the particle in Example 1.

SOLUTION

Solve Analytically We partition the time interval as in Example 2 but record every

position shift as positive by taking absolute values. The Riemann sum approximating
total distance traveled is

Z lv(t,)| At,

and we are led to the integral

5 5
Total distance traveled = J;} [v(1)| dt = J; 12— W dr.
Evaluate Numerically We have
NINT| |t2 ———=|.1.0,5]| = 42.59
1)

Now try Exercise 1(c).

Why do we take the absolute value?
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Compare the motion of the particle to the graph of v(t)...
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1. v(t) =5cost, 0<t=2mw
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' Exercises 1-8. the function v(#) is the velocity in m/sec of a b ) S Va-Xv t d—b . 5

uticle moving along the x-axis. Use analytic methods to do each of
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l.L(a)Right: 0=t < #/2,37/2 < 1= rm
Left: w2 <t <3m/2
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2.(a)Right: 0 <t < 7w/3
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Stopped: t = 0, #/3
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In Exercises 1-8, the function v(¢) is the velocity in m/sec of a
particle moving along the x-axis. Use analytic methods to do each of

the following:

(a) Determine when the particle is moving to the right, to the
left, and stopped.

(b) Find the particle’s displacement for the given time interval. If
s(0) = 3, what is the particle’s final position?
l.(a)Right: 0 =t < 72,372 <t=27w

(c) Find the total distance traveled by the particle.
LCft ""J(:_). o= - 21:/...

1. v(t) =5cost, 0<t=<2w See page 389. Stopped: t = w/2, 3712
2. v(t) =6sin3t, 0=<t=< /2 Seepage 389. (b)0; 3 (c) 20
3.v(1) =49 —98t, 0=1t=10 See page 389. 2. (a) Right: 0 <t<ml3
Left: 73 <t = w2
= 62 — =t<
4. v(t) = 6t 18t + 12, 0=t=2 Seepage 389. Stooded r—0 -
5.v(r) = 2tcost, 0=<t=<2m See page 389. (b) 2;5 (c) 6
. J.(a)Right: 0 =1 <5
6. ()—V —t, 0=t=4 Seepage389. Left: 5 <t = 10
7. v(t) = e cost, 0<t=<2m See page 389. Stopped: t = 5
¢ (b)0;3 (c) 245
8. v(1) = 5> 0=t=3 See page 389. 4.(a)Right: 0 =1 < 1
btk Left: 1 <f1<2
Stopped:t =1, 2
(b)4;7 (c) 6
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.(@Right: 0 <t < 72,372 <t <27
Left: a2 <t<m, 7w <t <3w/2
Stopped: t = 0, w/2, w, 37w/2, 2w
(b)0:3 (c) 20/3



2. v(t) = 6 sin 31,

Oo<t==w/2

See page 389.

2.(a)Right: 0 <r< w/3

Left: 7/3

- p—
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Stopped: 1 = 0, #/3
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In Exercises 1-8, the function v(¢) is the velocity in m/sec of a
particle moving along the x-axis. Use analytic methods to do each of
the following:

(a) Determine when the particle is moving to the right, to the
left, and stopped.

(b) Find the particle’s displacement for the given time interval. If
s(0) = 3, what is the particle’s final position?

(c) Find the total distance traveled by the particle.

1. v(t) =5cost, 0<t=<2w See page 389. 6.(a)Rightt 0=r<4
Left: never
2. v(t) =6sin3t, 0=<t=< /2 See page 389. Stopped: t = 4
. 95/3 .
3.v(t) =49 —98t, 0=1t=10 See page 389. ety (51068
4. (t) =612—18t+ 12, 0<t=<2 See page 389. 7.(a)Righ: 0=t < w2, 372 <t=2nw
) Left: 72 <t < 37w/2
5.v(r) = ntcost, 0<t=<2mw See page 389. Stopped: t = 7/2, 37/2
6. v(t) =\/j 0=<t=<4 Seepage 389. SR e
8.(a)Right: 0 <t=3
7. v(t) = es™cost, 0<t=<2m See page 389. Lc?[: T
t Stopped: f = 0
8. v(1) = 0=t=3 See page 389. (b) (In 10)/2 ~ 1.15;4.15 (©) (In 10)/2 =~ 1.15
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11. Projectile Recall that the acceleration due to Earth’s gravity is
32 ft/sec?. From ground level, a projectile is fired straight S&' ) - "'" Cv't ""q €
upward with velocity 90 feet per second.

(a) What is its velocity after 3 seconds? —6 ft/sec o - ‘Y‘ o\ ’\-* i C
W ctwent ™
(¢) When it hits the ground, what is the net distance it has

(b) When does it hit the ground? 5.625 sec (/f/ Q
traveled? 0 (‘e)" "lc‘t +ﬂ0 £ = o
(d) When it hits the ground, what is the total distance it has £ _,, O') 0
traveled? 253.125 feet ( ’(,
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9. An automobile accelerates from rest at 1 + 3Vt mph/sec for o a
O seconds. v () D P@ \{/@.\0 h O&zb&\cf %
(a) What is its velocity affr 9 seconfl_s? 63 mph e \/ (t) - a ('t') d L
(b) How far does it travel in those 9 seconds?  344.52 feet -3 i L ,‘L
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10. A particle travels with velocity
v(t) = (t — 2) sint m/sec
for 0 =t =4 sec.
(a) What 1s the particle’s displacement? = —1.44952 meters

(b) What is thmveled? =1.91411 meters ‘
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In Exercises 1216, a particle moves along the x-axis (units in cm).
Its initial position at f = 0 sec is x(0) = 15. The figure shows the
graph of the particle’s velocity v(t). The numbers are the areas of

the enclosed regions.
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12. What is the particle’s displacement between f = O and 1 = ¢?
—Z3Cm

13. What is the total distance traveled by the particle in the same

: - 5 > 9,‘
time period? 33 cm : _ (
1l s &—8 \oey
14. Give the positions of the particle at times a, b, and c. j() - S
15. Approximately where does the particle achieve its greatest 0( oG D)
positive acceleration on the interval [0, »]? =4 J (.,x'

e ——
16. Approximately where does the particle achieve its greatest

positive acceleration on the interval [0, ¢]? 1 =¢



In Exercises 17-20, the graph of the velocity of a particle moving on

the x-axis is given. The particle starts at x = 2 when 1 = 0.
(a) Find where the particle is at the end of the trip.
(b) Find the total distance traveled by the particle.
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21.

22.

U.S. Oil Consumption The rate of consumption of oil in the
United States during the 1980s (in billions of barrels per year)
is modeled by the function C = 27.08 - ¢/25 where 1 is the
number of years after January 1, 1980. Find the total consumption
of oil in the United States from January 1, 1980 to January 1,
1990. =332.965 billion barrels

Home Electricity Use The rate at which your home consumes
electricity is measured in kilowatts. If your home consumes
electricity at the rate of 1 kilowatt for 1 hour, you will be charged

for 1 “kilowatt-hour™ of electricity. Suppose that the average
consumption rate for a certain home is modeled by the function
C(t) = 3.9 — 2.4 sin (wt/12), where C(t) is measured in
kilowatts and 1 is the number of hours past midnight. Find the

average daily consumption for this home, measured in kilowatt-
hours. |




23. Population Density Population density measures the number
of people per square mile inhabiting a given living area.
Washerton’s population density, which decreases as you move
away from the city center, can be approximated by the function
10,000(2 — r) at a distance r miles from the city center.

(a) If the population density approaches zero at the edge of the
city, what is the city’s radius?

(b) A thin ring around the center of the city has thickness Ar and
radius . If you straighten it out, it suggests a rectangular strip.

Approximately what is its area? [

(c) Writing to Learn Explain why the population of the ring
in part (b) is approximately

10,000(2 — r)(27rr) Ar.

|
(d) Estimate the total population of Washerton by setting up
and evaluating a definite integral. :



24. Oil Flow Oil flows through a cylindrical pipe of radius
3 inches, but friction from the pipe slows the flow toward the
outer edge. The speed at which the oil flows at a distance r
inches from the center is 8(10 — r2) inches per second.

(a) In a plane cross section of the pipe, a thin ring with thickness
Ar at a distance r inches from the center approximates a
rectangular strip when you straighten it out. What is the area

of the strip (and hence the approximate area of the ring)? :

(b) Explain why we know that oil passes through this ring at
approximately 8(10 — r2)(27r) Ar cubic inches per second.

(¢) Set up and evaluate a definite integral that will give the rate
(in cubic inches per second) at which oil is flowing through the

pipe.




