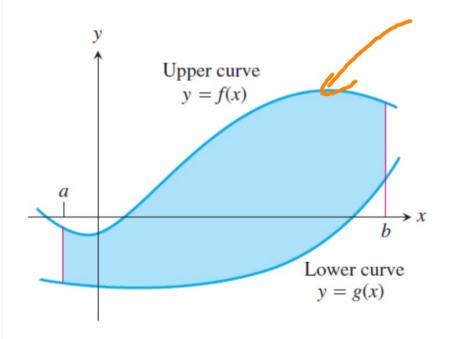
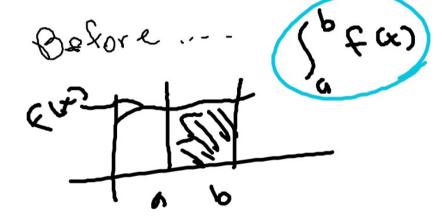
What you'll learn about

- Area Between Curves
- Area Enclosed by Intersecting Curves
- Boundaries with Changing Functions
- Integrating with Respect to y

7.2 Areas in the Plane

We know how to find areas between a graph and the x axis, but what if we wanted to find the area between curves?





2: What is the distance between Y = x and y = -x when 3 (-9) x=3?

Since we are finding a distance between two points along a number line (y-axis), we can subtract the two values to express the total distance.

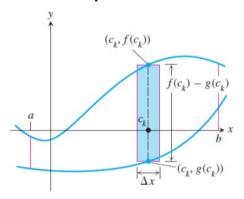


Figure 7.5 The area of a typical rectangle is $[f(c_k) - g(c_k)] \Delta x$.

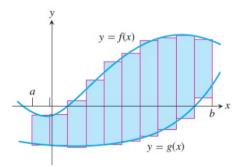


Figure 7.4 We approximate the region with rectangles perpendicular to the *x*-axis.

$$[f(c_k) - g(c_k)] \Delta x$$

(typical area of one rectangle)

$$\sum [f(c_k) - g(c_k)] \Delta x.$$

(typical sum of the area of rectangles, or region)

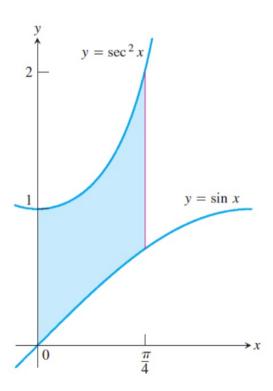
The limit of these sums as $\Delta x \rightarrow 0$ is

$$\int_{a}^{b} [f(x) - g(x)] dx$$

DEFINITION Area Between Curves

If f and g are continuous with $f(x) \ge g(x)$ throughout [a, b], then the area between the curves y = f(x) and y = g(x) from a to b is the integral of [f - g] from a to b,

$$A = \int_a^b [f(x) - g(x)] dx.$$



EXAMPLE 1 Applying the Definition

Find the area of the region between $y = \sec^2 x$ and $y = \sin x$ from x = 0 to $x = \pi/4$.

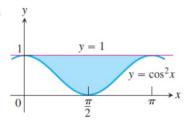
SOLUTION

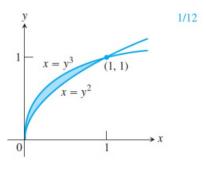
We graph the curves (Figure 7.6) to find their relative positions in the plane, and see that $y = \sec^2 x$ lies *above* $y = \sin x$ on $[0, \pi/4]$. The area is therefore

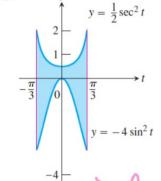
$$A = \int_0^{\pi/4} [\sec^2 x - \sin x] dx$$
$$= \left[\tan x + \cos x \right]_0^{\pi/4}$$
$$= \frac{\sqrt{2}}{2} \text{ units squared.}$$

Now try Exercise 1.

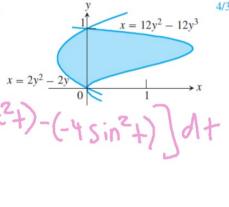
In Exercises 1-6, find the area of the shaded region analytically.





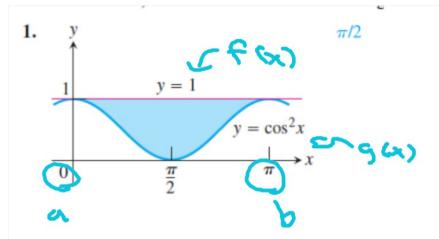


4.



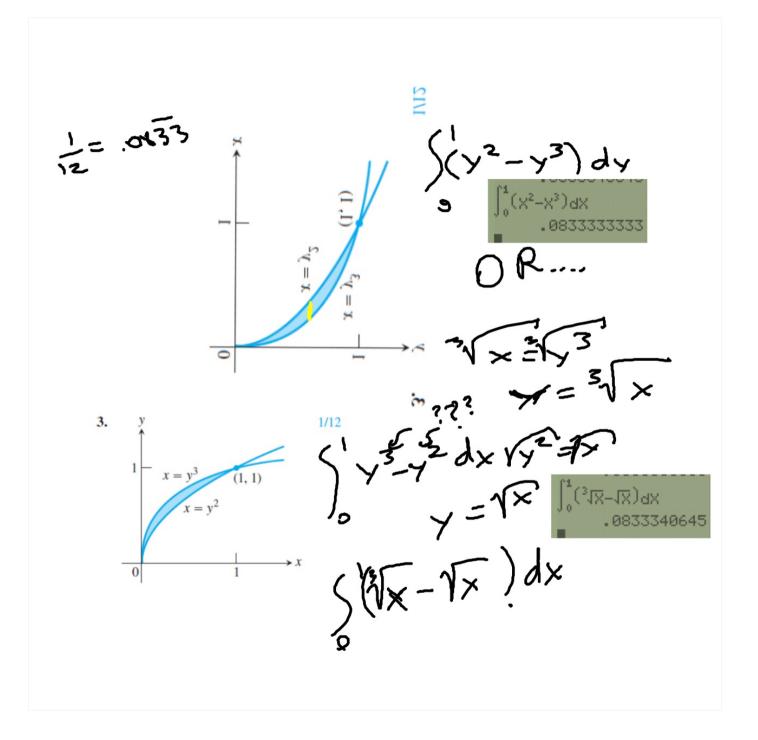
$$A = \int \left[\left(124^{2} - 124^{3} \right) - \left(24^{2} - 24 \right) \right] dy$$

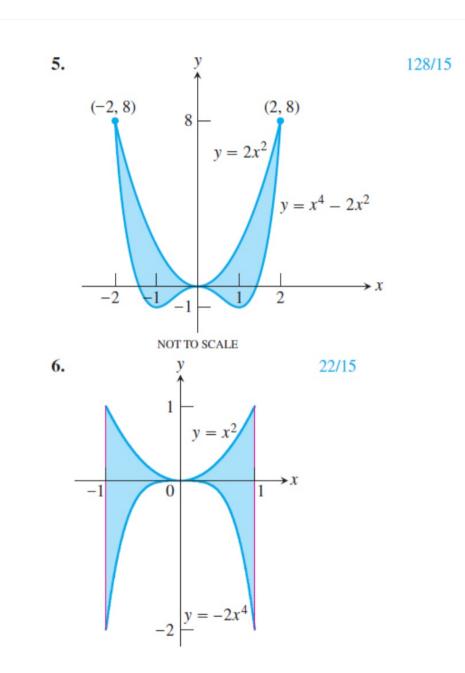
$$= 1.333$$



$$\int_{0}^{\pi} (1 - (\cos(X))^{2}) dx$$
1.570796327
$$\pi/2$$
1.570796327

$$A = \int_{0}^{\infty} \left[1 - \cos^{2}x \right] dx$$





I don't have to break down the integration because one graph is *always* above the other graph.

EXAMPLE 2 Area of an Enclosed Region

Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

SOLUTION

We graph the curves to view the region (Figure 7.8).

The limits of integration are found by solving the equation

$$2 - x^2 = -x$$

either algebraically or by calculator. The solutions are x = -1 and x = 2.

continued

Since the parabola lies above the line on [-1, 2], the area integrand is $2 - x^2 - (-x)$.

$$A = \int_{-1}^{2} [2 - x^2 - (-x)] dx$$

$$= \left[2x - \frac{x^3}{3} + \frac{x^2}{2} \right]_{-1}^{2}$$

$$= \frac{9}{2} \text{ units squared}$$

$$y_1 = 2 - x^2$$

$$y_2 = -x$$

$$y_1 = 2 - x^2$$

 $y_2 = -x$
[-6, 6] by [-4, 4]

Figure 7.8 The region in Example 2.

EXAMPLE 3 Using a Calculator

Find the area of the region enclosed by the graphs of $y = 2 \cos x$ and $y = x^2 - 1$.

SOLUTION

The region is shown in Figure 7.9.

Using a calculator, we solve the equation

$$2\cos x = x^2 - 1$$

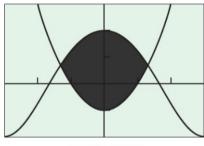
to find the x-coordinates of the points where the curves intersect. These are the limits of integration. The solutions are $x = \pm 1.265423706$. We store the negative value as A and the positive value as B. The area is

NINT
$$(2\cos x - (x^2 - 1), x, A, B) \approx 4.994907788$$
.

This is the final calculation, so we are now free to round. The area is about 4.99.

Now try Exercise 7.

$$y_1 = 2\cos x$$
$$y_2 = x^2 - 1$$



[-3, 3] by [-2, 3]

Figure 7.9 The region in Example 3.

In Exercises 7 and 8, use a calculator to find the area of the region enclosed by the graphs of the two functions.

7.
$$y = \sin x$$
, $y = 1 - x^2 \approx 1.670$ 8. $y = \cos(2x)$, $y = x^2 - 2 \approx 4.332$