In Exercises 35–38, use the cylindrical shell method to find the volume of the solid generated by revolving the region bounded by the curves about the y-axis.

35.
$$y = x$$
, $y = -x/2$, $x = 2$ 8π

36.
$$y = x^2$$
, $y = 2 - x$, $x = 0$, for $x \ge 0$ $5\pi/6$

37.
$$y = \sqrt{x}$$
, $y = 0$, $x = 4$ $128\pi/5$

38.
$$y = 2x - 1$$
, $y = \sqrt{x}$, $x = 0$ $7\pi/15$

$$(x)(2-x-x^2)d$$

 $2\pi \int_{0}^{1} (2X-X^{2}-X^{3}) dX$ 2.617993878 $5\pi/6$ 2.617993878 **38.** y = 2x - 1, $y = \sqrt{x}$, x = 0 $7\pi/15$

h = (x - (2x - 1)) h = (x - (2x - 1)) h = (x - 2x + 1) dx

277 (Cx)(Vx-2x+1)
- 31.466

- **40.** The solid lies between planes perpendicular to the *x*-axis at $x = -\pi/3$ and $x = \pi/3$. The cross sections perpendicular to the *x*-axis are
 - (a) circular disks with diameters running from the curve $y = \tan x$ to the curve $y = \sec x$. $\pi \sqrt{3} (\pi^2/6)$
 - (b) squares whose bases run from the curve $y = \tan x$ to the curve $y = \sec x$. $4\sqrt{3} (2\pi/3)$
- 41. The solid lies between planes perpendicular to the y-axis at y = 0 and y = 2. The cross sections perpendicular to the y-axis are circular disks with diameters running from the y-axis to the parabola $x = \sqrt{5}y^2$. 8π

42. The base of the solid is the disk $x^2 + y^2 \le 1$. The cross sections by planes perpendicular to the y-axis between y = -1 and y = 1 are isosceles right triangles with one leg in the disk. 8/3

