NAME

Study Guide and Intervention 8-6

Solving $x^2 + bx + c = 0$

Factor $x^2 + bx + c$ To factor a trinomial of the form $x^2 + bx + c$, find two integers, *m* and *p*, whose sum is equal to *b* and whose product is equal to *c*.

Factoring $x^2 + bx + c$ $x^{2} + bx + c = (x + m)(x + p)$, where m + p = b and mp = c.

Example 1 Factor each polynomial. a. $x^2 + 7x + 10$ In this trinomial, b = 7 and c = 10. Factors of 10 Sum of Factors 1, 10 11 7 2.5 Since 2 + 5 = 7 and $2 \cdot 5 = 10$, let m = 2and p = 5. $x^{2} + 7x + 10 = (x + 5)(x + 2)$ b. $x^2 - 8x + 7$ In this trinomial, b = -8 and c = 7. Notice that m + p is negative and mp is positive, so *m* and *p* are both negative. Since -7 + (-1) = -8 and (-7)(-1) = 7, m = -7 and p = -1. $x^2 - 8x + 7 = (x - 7)(x - 1)$

Example 2 Factor $x^2 + 6x - 16$.

In this trinomial, b = 6 and c = -16. This means m + p is positive and mp is negative. Make a list of the factors of -16, where one factor of each pair is positive.

Factors of -16	Sum of Factors
1, —16	—15
—1, 16	15
2, -8	-6
-2, 8	6

Therefore, m = -2 and p = 8. $x^{2} + 6x - 16 = (x - 2)(x + 8)$

Exercises

Factor each polynomial.

$1. x^{2} + 4x + 3 (x + 3)(x + 1)$	2. $m^2 + 12m + 32$ (m + 4)(m + 8)	3. $r^2 - 3r + 2$ (r - 2)(r - 1)
4. $x^2 - x - 6$ (x - 3)(x + 2)	5. $x^2 - 4x - 21$ (x - 7)(x + 3)	6. $x^2 - 22x + 121$ (x - 11)(x - 11)
7. $t^2 - 4t - 12$ (t + 2)(t - 6)	8. $p^2 - 16p + 64$ (p - 8)(p - 8)	9.9 - $10x + x^2$ (9 - x)(1 - x)
$10. x^2 + 6x + 5 (x + 5)(x + 1)$	$11. a^2 + 8a - 9 (a - 1)(a + 9)$	12. $y^2 - 7y - 8$ (y - 8)(y + 1)
$13. x^2 - 2x - 3 (x - 3)(x + 1)$	$14. y^2 + 14y + 13 (y + 1)(y + 13)$	$15. m^2 + 9m + 20 (m + 4)(m + 5)$
$16. x^2 + 12x + 20 (x + 10)(x + 2)$	$17. a^2 - 14a + 24 (a - 2)(a - 12)$	$18.18 + 11y + y^2 (9 + y)(2 + y)$
$19. x^{2} + 2xy + y^{2} (x + y)(x + y)$	20. $a^2 - 4ab + 4b^2$ (a - 2b)(a - 2b)	21. $x^2 + 6xy - 7y^2$ (x + 7y)(x - y)

Chapter 8

Study Guide and Intervention (continued) 8-6

Solving $x^2 + bx + c = 0$

Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve many equations of the form $x^2 + bx + c = 0$.

Solve $x^2 + 6x = 7$. Check your solutions. Example 1 $x^2 + 6x = 7$ Original equation $x^2 + 6x - 7 = 0$ Rewrite equation so that one side equals 0. (x-1)(x+7) = 0Factor. x - 1 = 0 or x + 7 = 0Zero Product Property x = -7x = 1Solve each equation.

The solution set is $\{1, -7\}$. Since $1^2 + 6(1) = 7$ and $(-7)^2 + 6(-7) = 7$, the solutions check.

Example 2 **ROCKET LAUNCH** The formula $h = vt - 16t^2$ gives the height h of a rocket after t seconds when the initial velocity v is given in feet per second. If a rocket is fired with initial velocity 2288 feet per second, how many seconds will it take for the rocket to reach a height of 6720 feet?

$h = vt - 16t^2$		Formula
6720 = 2288t - 1	$16t^{2}$	Substitute.
$0 = -16t^2 + 2$	288t - 6720	Rewrite equation so that one side equals 0.
0 = -16(t - 1)	143t + 420)	Factor out GCF.
0 = -16(t - 3)	(t - 140)	Factor
t - 3 = 0 or t	-140 = 0	Zero Product Property
t = 3	t = 140	Solve each equation.

The rocket reaches 6720 feet in 3 seconds and again in 140 seconds, or 2 minutes 20 seconds after launch.

Exercises

Solve each equation. Check the solutions.

1. $x^2 - 4x + 3 = 0$ [1, 3]	2. $y^2 - 5y + 4 = 0$ {1, 4 }	3. $m^2 + 10m + 9 = 0$ {-1, -9 }
4. $x^2 = x + 2 \{-1, 2\}$	5. $x^2 - 4x = 5 \{-1, 5\}$	6. $x^2 - 12x + 36 = 0$ {6 }
7. $t^2 - 8 = -7t \{-8, 1\}$	8. $p^2 = 9p - 14$ {2, 7}	9. $-9 - 8x + x^2 = 0$ {-1, 9 }
10. $x^2 + 6 = 5x \{2, 3\}$	11. $a^2 = 11a - 18$ {2, 9 }	12. $y^2 - 8y + 15 = 0$ {3, 5 }
13. $x^2 = 24 - 10x \{-12, 2\}$	14. $a^2 - 18a = -72$ {6, 12 }	15. $b^2 = 10b - 16$ {2, 8}

Use the formula $h = vt - 16t^2$ to solve each problem.

- **16. FOOTBALL** A punter can kick a football with an initial velocity of 48 feet per second. How many seconds will it take for the ball to first reach a height of 32 feet? **1 second**
- **17. ROCKET LAUNCH** If a rocket is launched with an initial velocity of 1600 feet per second, when will the rocket be 14.400 feet high? at 10 seconds and at 90 seconds