\qquad
\qquad

8-6 Study Guide and Intervention

Solving $x^{2}+b x+c=0$
Factor $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ To factor a trinomial of the form $x^{2}+b x+c$, find two integers, m and p, whose sum is equal to b and whose product is equal to c.

```
Factoring \mp@subsup{\mathbf{x}}{}{2}+\boldsymbol{b}\mathbf{x}+\mathbf{c}
```


Example 1 Factor each polynomial.

a. $x^{2}+7 x+10$

In this trinomial, $b=7$ and $c=10$.

Factors of $\mathbf{1 0}$	Sum of Factors
1,10	11
2,5	7

Since $2+5=7$ and $2 \cdot 5=10$, let $m=2$ and $p=5$.
$x^{2}+7 x+10=(x+5)(x+2)$
b. $x^{2}-8 x+7$

In this trinomial, $b=-8$ and $c=7$.
Notice that $m+p$ is negative and $m p$ is positive, so m and p are both negative.
Since $-7+(-1)=-8$ and $(-7)(-1)=7$, $m=-7$ and $p=-1$.
$x^{2}-8 x+7=(x-7)(x-1)$

Example $2 \quad$ Factor $\boldsymbol{x}^{2}+6 x-16$.

In this trinomial, $b=6$ and $c=-16$. This means $m+p$ is positive and $m p$ is negative. Make a list of the factors of -16 , where one factor of each pair is positive.

Factors of $-\mathbf{1 6}$	Sum of Factors
$1,-16$	-15
$-1,16$	15
$2,-8$	-6
$-2,8$	6

Therefore, $m=-2$ and $p=8$.
$x^{2}+6 x-16=(x-2)(x+8)$

Exercises

Factor each polynomial.

1. $x^{2}+4 x+3$

$$
(x+3)(x+1)
$$

2. $m^{2}+12 m+32$
$(m+4)(m+8)$
3. $r^{2}-3 r+2$
$(r-2)(r-1)$
4. $x^{2}-x-6$
5. $x^{2}-4 x-21$
6. $x^{2}-22 x+121$
$(x-7)(x+3)$
$(x-11)(x-11)$
7. $t^{2}-4 t-12$
8. $p^{2}-16 p+64$
$(t+2)(t-6)$
$(p-8)(p-8)$
9. $9-10 x+x^{2}$
10. $a^{2}+8 a-9$
$(9-x)(1-x)$
11. $x^{2}+6 x+5$

$$
(x+5)(x+1)
$$

$$
(a-1)(a+9)
$$

12. $y^{2}-7 y-8$
13. $x^{2}-2 x-3$
14. $y^{2}+14 y+13$
$(x-3)(x+1)$
$(y+1)(y+13)$
15. $m^{2}+9 m+20$
$(m+4)(m+5)$
16. $x^{2}+12 x+20$
$(\mathbf{x}+10)(\mathbf{x}+2)$
17. $a^{2}-14 a+24$
$(a-2)(a-12)$
18. $18+11 y+y^{2}$

$$
(9+y)(2+y)
$$

19. $x^{2}+2 x y+y^{2}$
$(x+y)(x+y)$
20. $a^{2}-4 a b+4 b^{2}$
21. $x^{2}+6 x y-7 y^{2}$
$(a-2 b)(a-2 b)$
\qquad
\qquad

8-6 Study Guide and Intervention (continued)

Solving $x^{2}+b x+c=0$
Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve many equations of the form $x^{2}+b x+c=0$.

Example 1 Solve $\boldsymbol{x}^{2}+6 \boldsymbol{x}=7$. Check your solutions.

$$
\begin{array}{rll}
x^{2}+6 x=7 & \text { Original equation } \\
x^{2}+6 x-7=0 & \text { Rewrite equation so that one side equals } 0 . \\
(x-1)(x+7)=0 & \text { Factor. } \\
x-1=0 \text { or } & x+7=0 & \text { Zero Product Property } \\
x=1 & x=-7 & \text { Solve each equation. }
\end{array}
$$

The solution set is $\{1,-7\}$. Since $1^{2}+6(1)=7$ and $(-7)^{2}+6(-7)=7$, the solutions check.
Example 2 ROCKET LAUNCH The formula $h=v t-16 t^{2}$ gives the height h of a rocket after t seconds when the initial velocity v is given in feet per second. If a rocket is fired with initial velocity 2288 feet per second, how many seconds will it take for the rocket to reach a height of $\mathbf{6 7 2 0}$ feet?

$$
\begin{aligned}
h & =v t-16 t^{2} & & \text { Formula } \\
6720 & =2288 t-16 t^{2} & & \text { Substitute. } \\
0 & =-16 t^{2}+2288 t-6720 & & \text { Rewrite equation so that one side equals } 0 . \\
0 & =-16(t-143 t+420) & & \text { Factor out GCF. } \\
0 & =-16(t-3)(t-140) & & \text { Factor } \\
t-3 & =0 \text { or } t-140=0 & & \text { Zero Product Property } \\
t & =3 & & \text { Solve each equation. }
\end{aligned}
$$

The rocket reaches 6720 feet in 3 seconds and again in 140 seconds, or 2 minutes 20 seconds after launch.

Exercises

Solve each equation. Check the solutions.

1. $x^{2}-4 x+3=0\{\mathbf{1 , 3}\}$
2. $y^{2}-5 y+4=0\{\mathbf{1}, \mathbf{4}\}$
3. $m^{2}+10 m+9=0\{-1,-\mathbf{9}\}$
4. $x^{2}=x+2\{-\mathbf{1}, \mathbf{2}\}$
5. $x^{2}-4 x=5\{-\mathbf{1}, \mathbf{5}\}$
6. $x^{2}-12 x+36=0\{6\}$
7. $t^{2}-8=-7 t\{-8,1\}$
8. $p^{2}=9 p-14\{2,7\}$
9. $-9-8 x+x^{2}=0\{-1,9\}$
10. $x^{2}+6=5 x\{\mathbf{2}, \mathbf{3}\}$
11. $a^{2}=11 a-18\{2,9\}$
12. $y^{2}-8 y+15=0\{\mathbf{3}, \mathbf{5}\}$
13. $x^{2}=24-10 x\{-12,2\}$
14. $a^{2}-18 a=-72\{\mathbf{6}, \mathbf{1 2}\}$
15. $b^{2}=10 b-16\{2,8\}$

Use the formula $h=v t-16 t^{2}$ to solve each problem.
16. FOOTBALL A punter can kick a football with an initial velocity of 48 feet per second.

How many seconds will it take for the ball to first reach a height of 32 feet? 1 second
17. ROCKET LAUNCH If a rocket is launched with an initial velocity of 1600 feet per
second, when will the rocket be 14,400 feet high? at 10 seconds and at 90 seconds

